Pregunta
upstudy study bank question image url

Question Drag the blue movable points to produce a graph that correctly represents the inequality \( y \leq-x^{2}-2 x-6 \). You may select one of the five possible shading options by sliding the black point up or down the panel on the left side of the graphing window.

Ask by Wyatt Estrada. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the inequality \( y \leq -x^2 - 2x - 6 \), follow these steps: 1. **Draw the parabola**: - The equation \( y = -x^2 - 2x - 6 \) is a downward-opening parabola with its vertex at \( (1, -9) \). - Plot the vertex and the y-intercept at \( (0, -6) \). - Sketch the parabola through these points. 2. **Shade the region**: - Since the inequality is \( y \leq -x^2 - 2x - 6 \), shade the area below the parabola. 3. **Use the black point**: - Slide the black point up or down to select the correct shading option that matches the shaded region below the parabola. By following these steps, you can accurately represent the inequality on the graph.

Solución

To graph the inequality \( y \leq -x^2 - 2x - 6 \), we need to follow these steps: 1. **Identify the boundary line**: The inequality \( y \leq -x^2 - 2x - 6 \) has a boundary line given by the equation \( y = -x^2 - 2x - 6 \). This is a quadratic equation, and its graph will be a parabola that opens downwards. 2. **Find the vertex**: The vertex of the parabola can be found using the formula for the vertex of a quadratic equation \( y = ax^2 + bx + c \), where the x-coordinate of the vertex is given by \( x = -\frac{b}{2a} \). Here, \( a = -1 \) and \( b = -2 \). \[ x = -\frac{-2}{2 \cdot -1} = 1 \] Now, substitute \( x = 1 \) back into the equation to find the y-coordinate of the vertex: \[ y = -1^2 - 2(1) - 6 = -1 - 2 - 6 = -9 \] So, the vertex is at the point \( (1, -9) \). 3. **Determine the intercepts**: - **Y-intercept**: Set \( x = 0 \): \[ y = -0^2 - 2(0) - 6 = -6 \] So, the y-intercept is \( (0, -6) \). - **X-intercepts**: Set \( y = 0 \): \[ 0 = -x^2 - 2x - 6 \] Rearranging gives: \[ x^2 + 2x + 6 = 0 \] The discriminant \( b^2 - 4ac = 2^2 - 4(1)(6) = 4 - 24 = -20 \) is negative, indicating there are no real x-intercepts. 4. **Graph the parabola**: Plot the vertex \( (1, -9) \) and the y-intercept \( (0, -6) \). Since the parabola opens downwards, draw the curve accordingly. 5. **Shading the region**: Since the inequality is \( y \leq -x^2 - 2x - 6 \), we will shade the region below the parabola. 6. **Final adjustments**: Ensure that the boundary line is solid (indicating that points on the line are included in the solution set). Now, you can drag the blue movable points to create the graph of the parabola and shade the appropriate region below it.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the inequality \( y \leq -x^{2} - 2x - 6 \), start by graphing the related quadratic equation \( y = -x^{2} - 2x - 6 \). This will give you a downward-opening parabola. By finding the vertex and intercepts, you can properly shape the curve. Once the parabola is graphed, shade the region below the curve to represent all points where \( y \) is less than or equal to the function. Make sure to highlight the boundary line when shading. Since the inequality includes "less than or equal to," the boundary (the parabola itself) should be a solid line, indicating that points on the curve are included in the solution set.

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad