Multiply. \[ \frac{x^{2}-4 x+3}{x+1} \cdot \frac{x+3}{4 x-4} \] Simplify. your answer as much as possible.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To simplify the expression \[ \frac{x^{2}-4 x+3}{x+1} \cdot \frac{x+3}{4 x-4}, \] we start by factoring wherever possible. 1. Factor \(x^{2} - 4x + 3\): \[ x^{2} - 4x + 3 = (x-1)(x-3) \] 2. Observe that \(4x - 4\) can be factored as: \[ 4x - 4 = 4(x-1) \] Now we can rewrite the expression with these factors: \[ \frac{(x-1)(x-3)}{x+1} \cdot \frac{x+3}{4(x-1)} \] Next, we multiply the fractions: \[ \frac{(x-1)(x-3)(x+3)}{(x+1) \cdot 4(x-1)} \] Now, we can cancel \(x - 1\) in the numerator and denominator (assuming \(x \neq 1\)). This leaves us with: \[ \frac{(x-3)(x+3)}{4(x+1)} \] Next, we can simplify the numerator \( (x-3)(x+3) \) which becomes: \[ \frac{x^2 - 9}{4(x+1)} \] Thus, the simplified expression for our original multiplication is: \[ \frac{x^2 - 9}{4(x+1)} \] Therefore, the final simplified form is: \[ \frac{x^2 - 9}{4(x + 1)} \] This simplifies as far as possible, provided \(x \neq 1\) and \(x \neq -1\).
