QUESTION 1 1.1 The line PQ has equation \( y=3 x-8 \) and point \( P \) has coordination \( (6,10) \). find the equation of the line that passes through \( P \) and is perpendicular to \( P Q \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the equation of the line that passes through point \( P(6,10) \) and is perpendicular to the line \( PQ \), we first need to determine the slope of line \( PQ \). The slope of line \( PQ \) is 3 (from the equation \( y = 3x - 8 \)). The slope of a line that is perpendicular to another line is the negative reciprocal. Hence, the slope of the perpendicular line is \( -\frac{1}{3} \). Using the point-slope form of the equation of a line, \( y - y_1 = m(x - x_1) \), where \( m = -\frac{1}{3} \) and \( (x_1, y_1) = (6, 10) \), we have: \[ y - 10 = -\frac{1}{3}(x - 6). \] Now, rearranging this equation, we get: \[ y = -\frac{1}{3}x + 12. \] Thus, the equation of the line that is perpendicular to \( PQ \) and passes through point \( P \) is \( y = -\frac{1}{3}x + 12 \).
preguntas relacionadas
