Pregunta
upstudy study bank question image url

A satellite is held in orbit by a \( 2000-\mathrm{N} \) gravitational force. Each time the satellite completes an orbit of circumference 80000 km , the work done on it by gravity is: 1) \( 1.6^{\prime} 10^{8} \mathrm{~J} \). 2) \( 1.6^{\cdot} 10^{11} \mathrm{~J} \). 3) \( 6.4^{\prime} 10^{11} \mathrm{~J} \). 4) 0 . 5) None of the above.

Ask by Owen Peters. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The work done on the satellite by gravity during one complete orbit is \( 1.6 \times 10^{11} \, \text{J} \).

Solución

To determine the work done on the satellite by gravity during one complete orbit, we can use the formula for work done, which is given by: \[ W = F \cdot d \cdot \cos(\theta) \] Where: - \( W \) is the work done, - \( F \) is the force applied, - \( d \) is the distance over which the force is applied, - \( \theta \) is the angle between the force and the direction of motion. In this case: - The gravitational force \( F = 2000 \, \text{N} \), - The distance \( d \) is the circumference of the orbit, which is \( 80000 \, \text{km} = 80000 \times 1000 \, \text{m} = 8 \times 10^7 \, \text{m} \), - The angle \( \theta = 0^\circ \) because the gravitational force acts towards the center of the orbit, and the satellite moves in a circular path. Since \( \cos(0^\circ) = 1 \), the formula simplifies to: \[ W = F \cdot d \] Now, substituting the values: \[ W = 2000 \, \text{N} \cdot 8 \times 10^7 \, \text{m} \] Calculating this gives: \[ W = 2000 \cdot 8 \times 10^7 = 1.6 \times 10^{11} \, \text{J} \] Thus, the work done on the satellite by gravity during one complete orbit is: \[ W = 1.6 \times 10^{11} \, \text{J} \] Therefore, the correct answer is: **2) \( 1.6 \cdot 10^{11} \, \text{J} \)**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

When a satellite orbits the Earth, the gravitational force acts as a centripetal force, maintaining the satellite's circular motion. However, since the direction of the gravitational force is always directed towards the center of the Earth and the satellite is moving tangentially, the gravitational force does no work on the satellite as it travels along its orbit. Consequently, the work done by gravity over one complete orbit is 0 Joules. In practical scenarios like satellite maintenance, engineers need to consider the satellite's orbital decay and potential adjustments. By utilizing rocket thrusters, satellites can effectively counteract gravitational pull and maintain their designated orbit, ensuring functionality for longer periods. It's a fascinating balance of physics and real-world application!

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad