34. A part of Jennifer's work to solve the equation \( 2\left(6 x^{2}-3\right)=11 x^{2}-x \) is shown below. Given: \( 2\left(6 x^{2}-3\right)=11 x^{2}-x \) Step 1: \( 12 x^{2}-6=11 x^{2}-x \) Which property justifies her first step? A. identity property of multiplication B. multiplication property of equality C. commutative property of multiplication D. distributive property of multiplication over subtraction
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
Jennifer's first step involves distributing the 2 across the terms inside the parentheses. This means she's applying the principle that you can multiply a sum or difference by a number. The correct answer is D, the distributive property of multiplication over subtraction, which allows you to express \( 2\left(6 x^{2}-3\right) \) as \( 12 x^{2} - 6 \). If you think about it, the distributive property is like a superhero for equations—helping you break down complicated expressions and making them easier to solve! Remember, mastering this property is a key step in leveling up your algebra skills!
