Pregunta
upstudy study bank question image url

40. Write a polynomial of least degree with the given zeroes. a. \( -2,1+\sqrt{7} \)

Ask by Macdonald Cruz. in the United States
Jan 15,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

One such polynomial is \( x^3 - 10x - 12 \).

Solución

To find a polynomial of the least degree with the given zeros, we'll assume that the polynomial has **rational coefficients**. This typically means that if a polynomial has an irrational zero like \(1 + \sqrt{7}\), its conjugate \(1 - \sqrt{7}\) must also be a zero to ensure that all coefficients remain rational. ### Given Zeros: - \(-2\) - \(1 + \sqrt{7}\) ### Additional Zero (Conjugate): - \(1 - \sqrt{7}\) Now, the zeros of the polynomial are: \[ -2, \quad 1 + \sqrt{7}, \quad 1 - \sqrt{7} \] ### Constructing the Polynomial: The polynomial can be constructed by multiplying factors corresponding to each zero: \[ P(x) = (x + 2)(x - (1 + \sqrt{7}))(x - (1 - \sqrt{7})) \] First, simplify the product of the last two factors using the difference of squares: \[ (x - (1 + \sqrt{7}))(x - (1 - \sqrt{7})) = (x - 1)^2 - (\sqrt{7})^2 = x^2 - 2x + 1 - 7 = x^2 - 2x - 6 \] Now, multiply this result by the first factor: \[ P(x) = (x + 2)(x^2 - 2x - 6) \] Expanding this product: \[ P(x) = x(x^2 - 2x - 6) + 2(x^2 - 2x - 6) = x^3 - 2x^2 - 6x + 2x^2 - 4x - 12 \] \[ P(x) = x^3 - 10x - 12 \] ### Final Polynomial: \[ P(x) = x^3 - 10x - 12 \] **Answer:** One such polynomial is x³ minus ten x minus twelve. In symbols, P(x) = x³ − 10 x − 12

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To create a polynomial with the zeroes \( -2 \) and \( 1+\sqrt{7} \), you must also include the conjugate zero \( 1-\sqrt{7} \) because polynomials with real coefficients require that non-real roots come in conjugate pairs. Therefore, you can form the polynomial by multiplying the factors corresponding to these roots: \((x + 2)(x - (1 + \sqrt{7}))(x - (1 - \sqrt{7}))\). This expands to give you a polynomial of the least degree which is a cubic polynomial! Another fun fact: The degree of a polynomial can often give insight into the nature of its graph. In this case, since we have three roots (counting the conjugate), the polynomial will cross the x-axis at three points, providing a richer, wave-like behavior. Polynomial graphs can be so whimsical, can’t they?

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad