Pregunta
upstudy study bank question image url

Given that \( \cos \theta \frac{8}{17} \cdot \) Cslculat \( \operatorname{cosec} \theta \) if \( \cos \theta=\operatorname{cin} 80^{\circ} \), find \( \theta \)

Ask by Ryan Norris. in Nigeria
Feb 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

If cos θ = 8⁄17, then cosec θ = 17⁄15. If cos θ = cos 80°, then θ = 80° or 280°.

Solución

There appears to be some confusion in the way the question is printed. One reading is that there are two parts: 1. Given that   cos θ = 8⁄17, calculate cosec θ. 2. Given that   cos θ = cos 80°, find all possible values of θ (or at least the principal one). I will explain both parts. ────────────────────────────── Part 1. Finding cosec θ when cos θ = 8⁄17 Step 1. Use the Pythagorean identity:   sin²θ + cos²θ = 1. Since cos θ = 8⁄17, we have   sin²θ = 1 − (8⁄17)² = 1 − 64⁄289 = (289 − 64)/289 = 225/289. Taking a (positive) square root (if we assume the angle is in the first quadrant),   sin θ = 15⁄17. Step 2. Recall that the cosecant is the reciprocal of the sine:   cosec θ = 1/sin θ = 17/15. ────────────────────────────── Part 2. Finding θ when cos θ = cos 80° The equation   cos θ = cos 80° has the general solution (in degrees):   θ = 80° + 360°·k  or  θ = –80° + 360°·k   for any integer k. If one is asked for the principal value (typically in the interval 0° ≤ θ < 360°), then the solutions are   θ = 80°  and  θ = 360° – 80° = 280°. ────────────────────────────── Thus, the answers are: • If cos θ = 8⁄17 (with θ acute), then sin θ = 15⁄17 and so cosec θ = 17/15. • If cos θ = cos 80°, then, in general, θ = 80° + 360°·k or θ = –80° + 360°·k (for any integer k); in [0°, 360°] these give θ = 80° and 280°. Hopefully, this clarifies the problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

First, let's start by clarifying that if \( \cos \theta = \frac{8}{17} \), we need to find \( \sin \theta \) to calculate \( \operatorname{cosec} \theta \). By using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we can determine \( \sin \theta \): \[ \sin^2 \theta = 1 - \cos^2 \theta = 1 - \left(\frac{8}{17}\right)^2 = 1 - \frac{64}{289} = \frac{225}{289} \] Thus, \[ \sin \theta = \sqrt{\frac{225}{289}} = \frac{15}{17} \quad (\text{since } \theta \text{ is in the first quadrant}) \] To find \( \operatorname{cosec} \theta \): \[ \operatorname{cosec} \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{15}{17}} = \frac{17}{15} \] Now, it seems there might have been some confusion with the reference to \( \cos \theta = \operatorname{cin} 80^{\circ} \). The cosine value would match with \( \cos(80^{\circ}) \approx 0.1736 \), which indeed does not match \( \frac{8}{17} \). Therefore, the value for \( \theta \) in your equations leads us to conclude: The final answers are \( \operatorname{cosec} \theta = \frac{17}{15} \) and \( \theta \) likely refers to an angle where the cosine value produced must resolve correctly, indicating potential misunderstanding in displaying the cosine identity correctly within the operational space.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad