Pregunta
upstudy study bank question image url

convert each complex number to polar form. \( \begin{array}{ll}4.9+2 i & \text { 5. }-7 \\ 6.9 i & \text { 7. }-3-3 i \\ 8 .-5+7 i & \text { 9. } \frac{\sqrt{3}}{4}-\frac{1}{4} i\end{array} \)

Ask by Tyler Mullins. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the complex numbers in polar form: 1. \( 4.9 + 2i \): \( 5.29 \, e^{i22.2^\circ} \) 2. \( -7 \): \( 7 \, e^{i180^\circ} \) 3. \( 6.9i \): \( 6.9 \, e^{i90^\circ} \) 4. \( -3 - 3i \): \( 4.24 \, e^{i225^\circ} \) 5. \( \frac{\sqrt{3}}{4} - \frac{1}{4}i \): \( \frac{1}{2} \, e^{i330^\circ} \)

Solución

To convert each complex number to its polar form, we'll express them in the form: \[ r (\cos \theta + i \sin \theta) \quad \text{or} \quad r e^{i\theta} \] where: - \( r \) is the magnitude (or modulus) of the complex number. - \( \theta \) is the argument (or angle) of the complex number in degrees. Let's convert each given complex number: --- ### **5. \( 4.9 + 2i \)** **Magnitude (\( r \)):** \[ r = \sqrt{4.9^2 + 2^2} = \sqrt{24.01 + 4} = \sqrt{28.01} \approx 5.29 \] **Angle (\( \theta \)):** \[ \theta = \arctan\left(\frac{2}{4.9}\right) \approx \arctan(0.408) \approx 22.2^\circ \] **Polar Form:** \[ 5.29 \left( \cos 22.2^\circ + i \sin 22.2^\circ \right) \quad \text{or} \quad 5.29\, e^{i22.2^\circ} \] --- ### **6. \( -7 \)** **Magnitude (\( r \)):** \[ r = |-7| = 7 \] **Angle (\( \theta \)):** \[ \theta = 180^\circ \quad \text{(since it's on the negative real axis)} \] **Polar Form:** \[ 7 \left( \cos 180^\circ + i \sin 180^\circ \right) \quad \text{or} \quad 7\, e^{i180^\circ} \] --- ### **7. \( 6.9i \)** **Magnitude (\( r \)):** \[ r = |6.9| = 6.9 \] **Angle (\( \theta \)):** \[ \theta = 90^\circ \quad \text{(since it's on the positive imaginary axis)} \] **Polar Form:** \[ 6.9 \left( \cos 90^\circ + i \sin 90^\circ \right) \quad \text{or} \quad 6.9\, e^{i90^\circ} \] --- ### **8. \( -3 - 3i \)** **Magnitude (\( r \)):** \[ r = \sqrt{(-3)^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} \approx 4.24 \] **Angle (\( \theta \)):** \[ \theta = \arctan\left(\frac{-3}{-3}\right) = \arctan(1) = 45^\circ \] Since both parts are negative, the angle is in the **third quadrant**: \[ \theta = 180^\circ + 45^\circ = 225^\circ \] **Polar Form:** \[ 4.24 \left( \cos 225^\circ + i \sin 225^\circ \right) \quad \text{or} \quad 4.24\, e^{i225^\circ} \] --- ### **9. \( \frac{\sqrt{3}}{4} - \frac{1}{4}i \)** **Magnitude (\( r \)):** \[ r = \sqrt{\left(\frac{\sqrt{3}}{4}\right)^2 + \left(-\frac{1}{4}\right)^2} = \sqrt{\frac{3}{16} + \frac{1}{16}} = \sqrt{\frac{4}{16}} = \frac{2}{4} = \frac{1}{2} \] **Angle (\( \theta \)):** \[ \theta = \arctan\left(\frac{-\frac{1}{4}}{\frac{\sqrt{3}}{4}}\right) = \arctan\left(-\frac{1}{\sqrt{3}}\right) = -30^\circ \] Since the real part is positive and the imaginary part is negative, the angle is in the **fourth quadrant**: \[ \theta = 360^\circ - 30^\circ = 330^\circ \] **Polar Form:** \[ \frac{1}{2} \left( \cos 330^\circ + i \sin 330^\circ \right) \quad \text{or} \quad \frac{1}{2}\, e^{i330^\circ} \] --- **Summary of Polar Forms:** 1. **\( 4.9 + 2i \):** \[ 5.29\, e^{i22.2^\circ} \] 2. **\( -7 \):** \[ 7\, e^{i180^\circ} \] 3. **\( 6.9i \):** \[ 6.9\, e^{i90^\circ} \] 4. **\( -3 - 3i \):** \[ 4.24\, e^{i225^\circ} \] 5. **\( \frac{\sqrt{3}}{4} - \frac{1}{4}i \):** \[ \frac{1}{2}\, e^{i330^\circ} \] --- Feel free to reach out if you need further clarification on any of these conversions!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To convert the given complex numbers to polar form, we will use the formula: \[ r = \sqrt{x^2 + y^2} \] \[ \theta = \tan^{-1}\left(\frac{y}{x}\right) \] Here, \( r \) represents the magnitude and \( \theta \) the argument (angle) of the complex number \( z = x + yi \). 1. **For \( 4.9 + 2i \)**: - \( r = \sqrt{(4.9)^2 + (2)^2} = \sqrt{24.01 + 4} = \sqrt{28.01} \approx 5.29 \) - \( \theta = \tan^{-1}\left(\frac{2}{4.9}\right) \approx 0.3805 \, \text{radians} \) - Polar Form: \( 5.29\left(\cos(0.3805) + i\sin(0.3805)\right) \) 2. **For \( -7 \)**: - \( r = 7 \) - \( \theta = \tan^{-1}\left(\frac{0}{-7}\right) = \pi \) (since it's on the negative x-axis) - Polar Form: \( 7(\cos(\pi) + i\sin(\pi)) \) 3. **For \( 6.9i \)**: - \( r = 6.9 \) - \( \theta = \frac{\pi}{2} \) (since it's on the positive imaginary axis) - Polar Form: \( 6.9(\cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2})) \) 4. **For \( -3 - 3i \)**: - \( r = \sqrt{(-3)^2 + (-3)^2} = \sqrt{9 + 9} = \sqrt{18} = 3\sqrt{2} \) - \( \theta = \tan^{-1}\left(\frac{-3}{-3}\right) = \frac{5\pi}{4} \) (in the third quadrant) - Polar Form: \( 3\sqrt{2}\left(\cos\left(\frac{5\pi}{4}\right) + i\sin\left(\frac{5\pi}{4}\right)\right) \) 5. **For \( 8 - 5 + 7i \)** (interpreted as \( 8 - 5 + 7i \)): - First combine the real parts if needed. - Let's assume you meant: \( (8 - 5) + 7i = 3 + 7i \) - \( r = \sqrt{(3)^2 + (7)^2} = \sqrt{9 + 49} = \sqrt{58} \) - \( \theta = \tan^{-1}\left(\frac{7}{3}\right) \approx 1.1659 \) - Polar Form: \( \sqrt{58}\left(\cos(1.1659) + i\sin(1.1659)\right) \) 6. **For \( \frac{\sqrt{3}}{4} - \frac{1}{4}i \)**: - \( r = \sqrt{\left(\frac{\sqrt{3}}{4}\right)^2 + \left(-\frac{1}{4}\right)^2} = \sqrt{\frac{3}{16} + \frac{1}{16}} = \sqrt{\frac{4}{16}} = \frac{1}{2} \) - \( \theta = \tan^{-1}\left(\frac{-\frac{1}{4}}{\frac{\sqrt{3}}{4}}\right) = \tan^{-1}\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6} \) - Polar Form: \( \frac{1}{2}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) \) In summary, the polar forms are: 1. \( 5.29\left(\cos(0.3805) + i\sin(0.3805)\right) \) 2. \( 7(\cos(\pi) + i\sin(\pi)) \) 3. \( 6.9\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad