Pregunta
upstudy study bank question image url

Paul opened a bakery. The net value of the bakery (in thousands of dollars) \( t \) months after its creation is modeled by \( v(t)=2 t^{2}-12 t-14 \) Paul wants to know what his bakery's lowest net value will be. 1) Rewrite the function in a different form (factored or vertex) where the answer appears as a number in the equation. \( v(t)=\square \) streak 2) What is the bakery's lowest net value?

Ask by Kelley Bradley. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1) \( v(t) = 2(t - 3)^2 - 32 \) 2) The bakery's lowest net value is –32 (i.e., –$32,000).

Solución

We begin with the function   v(t) = 2t² – 12t – 14. 1) To rewrite it in vertex form, complete the square:  Step 1: Factor out the coefficient of t² from the first two terms:   v(t) = 2(t² – 6t) – 14.  Step 2: Complete the square inside the parentheses. For t² – 6t:   Take half of -6, which is -3, and square it to get 9.   Rewrite t² – 6t as (t – 3)² – 9:    t² – 6t = (t – 3)² – 9.  Step 3: Substitute back into the equation:   v(t) = 2[(t – 3)² – 9] – 14      = 2(t – 3)² – 18 – 14      = 2(t – 3)² – 32. So, the function in vertex form is:   v(t) = 2(t – 3)² – 32. 2) Since the squared term (t – 3)² is always nonnegative, the minimum value of v occurs when (t – 3)² = 0 (i.e., at t = 3). Plugging this into the equation gives:   v(3) = 2(0)² – 32 = –32. Thus, the bakery's lowest net value is –32 (in thousands of dollars), which means –$32,000. Final Answers: 1) v(t) = 2(t – 3)² – 32 2) The bakery's lowest net value is –32 (i.e., –$32,000).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the vertex form of the quadratic function \( v(t) = 2t^2 - 12t - 14 \), we can complete the square. Start by factoring out the coefficient of \( t^2 \) from the first two terms: \[ v(t) = 2(t^2 - 6t) - 14. \] Next, complete the square inside the parentheses: \[ v(t) = 2\left(t^2 - 6t + 9 - 9\right) - 14 = 2\left((t-3)^2 - 9\right) - 14. \] This simplifies to: \[ v(t) = 2(t-3)^2 - 18 - 14 = 2(t-3)^2 - 32. \] Now, the function is in vertex form: \[ v(t) = 2(t-3)^2 - 32. \] The bakery's lowest net value is found at the vertex, where \( (t-3)^2 \) equals zero (the minimum point). Plugging in \( t = 3 \), we find: \[ v(3) = 2(0) - 32 = -32. \] So, the lowest net value of the bakery is \( -32 \) thousand dollars. In the world of baking, many startups struggle initially, often due to underestimated costs or unexpected competition. Understanding your cash flow model and keeping a close eye on expenses can save a new bakery from some sticky situations! Engaging with fellow bakers in your community might also lead to collaborations, promotions, or even sharing space, reducing overhead for everyone involved. For those with a sweet tooth for financial wisdom, there are plenty of resources available, from online courses on financial management for small businesses to books that delve into case studies of successful bakeries. Titles such as "The E-Myth Bakery" by Michael E. Gerber could provide insights into balancing the art of baking with the science of running a profitable bakery. So grab a cup of coffee and get reading!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad