Pregunta
upstudy study bank question image url

(g) \( \frac{4}{x-6}=\frac{2-3 x}{2 x-x^{2}}-\frac{12}{x^{2}-8 x+12} \)

Ask by Page Schofield. in South Africa
Feb 15,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( x = -12 - 2\sqrt{39} \) and \( x = -12 + 2\sqrt{39} \).

Solución

Solve the equation \( \frac{4}{x-6}=\frac{2-3x}{2x-x^{2}}-\frac{12}{x^{2}-8x+12} \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{4}{x-6}=\frac{2-3x}{2x-x^{2}}-\frac{12}{x^{2}-8x+12}\) - step1: Find the domain: \(\frac{4}{x-6}=\frac{2-3x}{2x-x^{2}}-\frac{12}{x^{2}-8x+12},x \in \left(-\infty,0\right)\cup \left(0,2\right)\cup \left(2,6\right)\cup \left(6,+\infty\right)\) - step2: Multiply both sides of the equation by LCD: \(\frac{4}{x-6}\times \left(-x\left(x-6\right)\left(x-2\right)\right)=\left(\frac{2-3x}{2x-x^{2}}-\frac{12}{x^{2}-8x+12}\right)\left(-x\left(x-6\right)\left(x-2\right)\right)\) - step3: Simplify the equation: \(-4x^{2}+8x=32x-12-3x^{2}\) - step4: Move the expression to the left side: \(-4x^{2}+8x-\left(32x-12-3x^{2}\right)=0\) - step5: Calculate: \(-x^{2}-24x+12=0\) - step6: Multiply both sides: \(x^{2}+24x-12=0\) - step7: Solve using the quadratic formula: \(x=\frac{-24\pm \sqrt{24^{2}-4\left(-12\right)}}{2}\) - step8: Simplify the expression: \(x=\frac{-24\pm \sqrt{624}}{2}\) - step9: Simplify the expression: \(x=\frac{-24\pm 4\sqrt{39}}{2}\) - step10: Separate into possible cases: \(\begin{align}&x=\frac{-24+4\sqrt{39}}{2}\\&x=\frac{-24-4\sqrt{39}}{2}\end{align}\) - step11: Simplify the expression: \(\begin{align}&x=-12+2\sqrt{39}\\&x=\frac{-24-4\sqrt{39}}{2}\end{align}\) - step12: Simplify the expression: \(\begin{align}&x=-12+2\sqrt{39}\\&x=-12-2\sqrt{39}\end{align}\) - step13: Check if the solution is in the defined range: \(\begin{align}&x=-12+2\sqrt{39}\\&x=-12-2\sqrt{39}\end{align},x \in \left(-\infty,0\right)\cup \left(0,2\right)\cup \left(2,6\right)\cup \left(6,+\infty\right)\) - step14: Find the intersection: \(\begin{align}&x=-12+2\sqrt{39}\\&x=-12-2\sqrt{39}\end{align}\) - step15: Rewrite: \(x_{1}=-12-2\sqrt{39},x_{2}=-12+2\sqrt{39}\) The solutions to the equation \( \frac{4}{x-6}=\frac{2-3x}{2x-x^{2}}-\frac{12}{x^{2}-8x+12} \) are \( x_{1}=-12-2\sqrt{39} \) and \( x_{2}=-12+2\sqrt{39} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the equation \( \frac{4}{x-6}=\frac{2-3 x}{2 x-x^{2}}-\frac{12}{x^{2}-8 x+12} \), we start by simplifying the terms on the right. First, notice that the denominator \( x^2 - 8x + 12 \) can be factored: \[ x^2 - 8x + 12 = (x-6)(x-2) \] Thus, \[ \frac{12}{x^2 - 8x + 12} = \frac{12}{(x-6)(x-2)} \] Next, let's simplify the other term: The denominator \( 2x - x^2 \) can be rearranged as \( -(x^2 - 2x) = -x(x-2) \), hence, \[ \frac{2-3x}{2x - x^2} = \frac{2-3x}{-x(x-2)} = -\frac{2-3x}{x(x-2)} \] Now we have: \[ \frac{4}{x-6} = -\frac{2-3x}{x(x-2)} - \frac{12}{(x-6)(x-2)} \] Next, we'll get a common denominator for the right-hand side: \[ -\frac{(2-3x)(x-6) + 12x}{x(x-2)(x-6)} \] Expanding the first term: \[ (2-3x)(x-6) = 2x - 12 - 3x^2 + 18x = -3x^2 + 20x - 12 \] Thus, the right side becomes: \[ -\frac{-3x^2 + 20x - 12 + 12x}{x(x-2)(x-6)} = -\frac{-3x^2 + 32x - 12}{x(x-2)(x-6)} \] Combine this with the left side: \[ \frac{4}{x-6} = \frac{3x^2 - 32x + 12}{x(x-2)(x-6)} \] To solve for \( x \), we cross-multiply: \[ 4 \cdot x(x-2) = (3x^2 - 32x + 12)(x-6) \] Expanding both sides, then simplifying gives us a polynomial equation that we can solve for \( x \). You can continue expanding and combining terms, ultimately leading to a polynomial equation, which can be solved using methods such as factoring or the quadratic formula. After solving for \( x \), check for extraneous solutions in the context of the original equation. Now you have a robust framework for handling rational equations like this one! Don’t forget to check for restrictions on \( x \) based on the original denominators to avoid division by zero.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad