Pregunta
upstudy study bank question image url

If \( \sin \alpha=\frac{3}{5} \) with \( \alpha \in\left[90^{\circ} ; 270^{\circ}\right] \) and \( \cos \beta=\frac{-12}{13} \) with \( \beta \in\left[0^{\circ} ; 180^{\circ}\right] \) calculate without the use of a calculator and with the aid of a diagram th value of \( \cos \alpha+\tan \beta \). UCTION FORMITAE

Ask by Reeves Turner. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \cos \alpha + \tan \beta = -\frac{73}{60} \)

Solución

Step 1: Find cos α We are given sin α = 3/5 and that α lies in [90°, 270°]. Since sine is positive in this interval, α must be in Quadrant II, where cosine is negative. Using the identity:   sin²α + cos²α = 1 Substitute sin α:   (3/5)² + cos²α = 1   9/25 + cos²α = 1   cos²α = 1 - 9/25 = 16/25 Since α is in Quadrant II, cos α = –√(16/25) = –4/5. Step 2: Find tan β We are given cos β = –12/13 and that β lies in [0°, 180°]. Since cosine is negative in this interval, β is in Quadrant II where sine is positive. Compute sin β using:   sin²β + cos²β = 1   sin²β + (–12/13)² = 1   sin²β + 144/169 = 1   sin²β = 1 - 144/169 = 25/169   sin β = 5/13  (since sine is positive in Quadrant II) Then, tan β = sin β / cos β = (5/13) / (–12/13) = –5/12. Step 3: Compute cos α + tan β Now sum:   cos α + tan β = (–4/5) + (–5/12) Find a common denominator (60):   (–4/5) = –48/60   (–5/12) = –25/60 So,   cos α + tan β = –48/60 – 25/60 = –73/60 Final Answer: cos α + tan β = –73/60. Diagram (for visualization): • For angle α (in Quadrant II):   Imagine a right triangle where the opposite side is 3 and the hypotenuse is 5. Since α is in QII, the adjacent side is negative, –4. • For angle β (in Quadrant II):   Imagine a right triangle where the adjacent side is –12 and the hypotenuse is 13. The opposite side is 5. These triangles help illustrate the sign choices and the computed values.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \( \cos \alpha \), since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we have: \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left( \frac{3}{5} \right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \( \cos \alpha = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \) because \( \alpha \) is in the second quadrant where cosine is negative. Now for \( \tan \beta \), we use the identity \( \tan \beta = \frac{\sin \beta}{\cos \beta} \). Given \( \cos \beta = -\frac{12}{13} \) and using \( \sin^2 \beta + \cos^2 \beta = 1\), we find: \[ \sin^2 \beta = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Hence, \( \sin \beta = \sqrt{\frac{25}{169}} = \frac{5}{13} \) as \( \beta \) is in the second quadrant where sine is positive. Now we compute: \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{5}{13}}{-\frac{12}{13}} = -\frac{5}{12} \] Finally, we combine the results: \[ \cos \alpha + \tan \beta = -\frac{4}{5} - \frac{5}{12} \] To add these fractions, we find a common denominator, which is 60: \[ -\frac{4}{5} = -\frac{48}{60}, \quad -\frac{5}{12} = -\frac{25}{60} \] So, \[ -\frac{48}{60} - \frac{25}{60} = -\frac{73}{60} \] Thus, the final result is: \[ \cos \alpha + \tan \beta = -\frac{73}{60} \] Yay math! Who knew that being a mathematician could lead you on such an exciting journey through angles, triangles, and tangents!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad