If \( \sin \alpha=\frac{3}{5} \) with \( \alpha \in\left[90^{\circ} ; 270^{\circ}\right] \) and \( \cos \beta=\frac{-12}{13} \) with \( \beta \in\left[0^{\circ} ; 180^{\circ}\right] \) calculate without the use of a calculator and with the aid of a diagram th value of \( \cos \alpha+\tan \beta \). UCTION FORMITAE
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find \( \cos \alpha \), since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), we have: \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left( \frac{3}{5} \right)^2 = 1 - \frac{9}{25} = \frac{16}{25} \] Thus, \( \cos \alpha = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \) because \( \alpha \) is in the second quadrant where cosine is negative. Now for \( \tan \beta \), we use the identity \( \tan \beta = \frac{\sin \beta}{\cos \beta} \). Given \( \cos \beta = -\frac{12}{13} \) and using \( \sin^2 \beta + \cos^2 \beta = 1\), we find: \[ \sin^2 \beta = 1 - \left(-\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Hence, \( \sin \beta = \sqrt{\frac{25}{169}} = \frac{5}{13} \) as \( \beta \) is in the second quadrant where sine is positive. Now we compute: \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{5}{13}}{-\frac{12}{13}} = -\frac{5}{12} \] Finally, we combine the results: \[ \cos \alpha + \tan \beta = -\frac{4}{5} - \frac{5}{12} \] To add these fractions, we find a common denominator, which is 60: \[ -\frac{4}{5} = -\frac{48}{60}, \quad -\frac{5}{12} = -\frac{25}{60} \] So, \[ -\frac{48}{60} - \frac{25}{60} = -\frac{73}{60} \] Thus, the final result is: \[ \cos \alpha + \tan \beta = -\frac{73}{60} \] Yay math! Who knew that being a mathematician could lead you on such an exciting journey through angles, triangles, and tangents!
