What are the solutions of \( \cos 4 \theta=\cos 2 \theta=\sin 30 \) ? Seleet It thater(s) \( \frac{7 \pi}{6}+2 \pi \pi \) \( \frac{n \pi}{4} \) \( \frac{7 \pi}{6}+n \pi \) \( \frac{\pi}{4}+n \pi \) \( 0+\frac{n \pi}{3} \) \( \frac{11 \pi}{6}+m \pi \) \( \frac{3 \pi}{4}+n \pi \) \( \frac{11 \pi}{6}+2 n \pi \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To solve the equation \( \cos 4 \theta = \cos 2 \theta = \sin 30 \), we should first recognize that \( \sin 30 = \frac{1}{2} \). Thus we have \( \cos 4 \theta = \frac{1}{2} \) and \( \cos 2 \theta = \frac{1}{2} \). The general solutions for \( \cos x = \frac{1}{2} \) are given by \( x = \frac{\pi}{3} + 2n\pi \) or \( x = \frac{5\pi}{3} + 2n\pi \). Applying this to \( \cos 2\theta \): 1. \( 2\theta = \frac{\pi}{3} + 2n\pi \) or \( 2\theta = \frac{5\pi}{3} + 2n\pi \). Dividing these equations by 2, we find the solutions for \( \theta \): - \( \theta = \frac{\pi}{6} + n\pi \) - \( \theta = \frac{5\pi}{6} + n\pi \) Now, applying this to \( \cos 4\theta \) (four times the angle): 1. \( 4\theta = \frac{\pi}{3} + 2m\pi \) or \( 4\theta = \frac{5\pi}{3} + 2m\pi \). Solving \( 4\theta \) similarly yields: - \( \theta = \frac{\pi}{12} + \frac{m\pi}{2} \) - \( \theta = \frac{5\pi}{12} + \frac{m\pi}{2} \) Combining these gives us a range of solutions \( \theta = \frac{n\pi}{4} \) and others based on integer multiples of \(\pi\). Using this framework in mathematical terms could lead you to explore the deeper geometric interpretations of the trigonometric functions involved, particularly how angles relate to unit circles! Also, if you're interested in learning more about identifying angles in trigonometric functions, you might want to read up on angle formulas and the unit circle. Understanding these concepts provides a robust toolkit for recognizing patterns in solutions, which can be incredibly useful in higher-level math!
