Pregunta
upstudy study bank question image url

What are the solutions of \( \cos 4 \theta=\cos 2 \theta=\sin 30 \) ? Seleet It thater(s) \( \frac{7 \pi}{6}+2 \pi \pi \) \( \frac{n \pi}{4} \) \( \frac{7 \pi}{6}+n \pi \) \( \frac{\pi}{4}+n \pi \) \( 0+\frac{n \pi}{3} \) \( \frac{11 \pi}{6}+m \pi \) \( \frac{3 \pi}{4}+n \pi \) \( \frac{11 \pi}{6}+2 n \pi \)

Ask by Murray Bernard. in the United Arab Emirates
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are \( \frac{7\pi}{6} + n\pi \) and \( \frac{11\pi}{6} + m\pi \).

Solución

To solve the equation \( \cos 4\theta = \cos 2\theta = \sin 30^\circ \), we first need to evaluate \( \sin 30^\circ \): \[ \sin 30^\circ = \frac{1}{2} \] Now we can rewrite the equations as: 1. \( \cos 4\theta = \frac{1}{2} \) 2. \( \cos 2\theta = \frac{1}{2} \) ### Step 1: Solve \( \cos 4\theta = \frac{1}{2} \) The general solutions for \( \cos x = \frac{1}{2} \) are: \[ x = 2n\pi \pm \frac{\pi}{3} \quad (n \in \mathbb{Z}) \] Substituting \( x = 4\theta \): \[ 4\theta = 2n\pi \pm \frac{\pi}{3} \] Dividing by 4: \[ \theta = \frac{n\pi}{2} \pm \frac{\pi}{12} \] ### Step 2: Solve \( \cos 2\theta = \frac{1}{2} \) Similarly, for \( \cos x = \frac{1}{2} \): \[ x = 2m\pi \pm \frac{\pi}{3} \quad (m \in \mathbb{Z}) \] Substituting \( x = 2\theta \): \[ 2\theta = 2m\pi \pm \frac{\pi}{3} \] Dividing by 2: \[ \theta = m\pi \pm \frac{\pi}{6} \] ### Step 3: Combine the solutions Now we have two sets of solutions: 1. From \( \cos 4\theta = \frac{1}{2} \): \[ \theta = \frac{n\pi}{2} + \frac{\pi}{12} \quad \text{and} \quad \theta = \frac{n\pi}{2} - \frac{\pi}{12} \] 2. From \( \cos 2\theta = \frac{1}{2} \): \[ \theta = m\pi + \frac{\pi}{6} \quad \text{and} \quad \theta = m\pi - \frac{\pi}{6} \] ### Step 4: Identify the solutions from the options Now we will check which of the provided options match the solutions we derived. 1. \( \frac{7\pi}{6} + 2\pi n \) 2. \( \frac{n\pi}{4} \) 3. \( \frac{7\pi}{6} + n\pi \) 4. \( \frac{\pi}{4} + n\pi \) 5. \( 0 + \frac{n\pi}{3} \) 6. \( \frac{11\pi}{6} + m\pi \) 7. \( \frac{3\pi}{4} + n\pi \) 8. \( \frac{11\pi}{6} + 2n\pi \) ### Step 5: Check for specific values - For \( \theta = \frac{n\pi}{2} + \frac{\pi}{12} \) and \( \theta = \frac{n\pi}{2} - \frac{\pi}{12} \), we can find specific values of \( n \) that yield results in the options. - For \( \theta = m\pi + \frac{\pi}{6} \) and \( \theta = m\pi - \frac{\pi}{6} \), we can also find specific values of \( m \). After checking the options, we find that: - \( \frac{7\pi}{6} + n\pi \) can be derived from \( \theta = m\pi + \frac{\pi}{6} \) for specific values of \( m \). - \( \frac{11\pi}{6} + m\pi \) can also be derived from the same. Thus, the solutions that match the derived equations are: - \( \frac{7\pi}{6} + n\pi \) - \( \frac{11\pi}{6} + m\pi \) These are the solutions to the given problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equation \( \cos 4 \theta = \cos 2 \theta = \sin 30 \), we should first recognize that \( \sin 30 = \frac{1}{2} \). Thus we have \( \cos 4 \theta = \frac{1}{2} \) and \( \cos 2 \theta = \frac{1}{2} \). The general solutions for \( \cos x = \frac{1}{2} \) are given by \( x = \frac{\pi}{3} + 2n\pi \) or \( x = \frac{5\pi}{3} + 2n\pi \). Applying this to \( \cos 2\theta \): 1. \( 2\theta = \frac{\pi}{3} + 2n\pi \) or \( 2\theta = \frac{5\pi}{3} + 2n\pi \). Dividing these equations by 2, we find the solutions for \( \theta \): - \( \theta = \frac{\pi}{6} + n\pi \) - \( \theta = \frac{5\pi}{6} + n\pi \) Now, applying this to \( \cos 4\theta \) (four times the angle): 1. \( 4\theta = \frac{\pi}{3} + 2m\pi \) or \( 4\theta = \frac{5\pi}{3} + 2m\pi \). Solving \( 4\theta \) similarly yields: - \( \theta = \frac{\pi}{12} + \frac{m\pi}{2} \) - \( \theta = \frac{5\pi}{12} + \frac{m\pi}{2} \) Combining these gives us a range of solutions \( \theta = \frac{n\pi}{4} \) and others based on integer multiples of \(\pi\). Using this framework in mathematical terms could lead you to explore the deeper geometric interpretations of the trigonometric functions involved, particularly how angles relate to unit circles! Also, if you're interested in learning more about identifying angles in trigonometric functions, you might want to read up on angle formulas and the unit circle. Understanding these concepts provides a robust toolkit for recognizing patterns in solutions, which can be incredibly useful in higher-level math!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad