Pregunta
upstudy study bank question image url

a of a rectangle is \( 52 \mathrm{~m}^{2} \), and the length of the rectangle is 5 m less than twiee the witth. Find the dime ength ? \( \square \) Width I \( \square \) III

Ask by Collins Moreno. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Width = 6.5 meters Length = 8 meters

Solución

Let the width be w (in meters). According to the problem, the length is 5 meters less than twice the width. That is,   Length L = 2w – 5. The area of the rectangle is given as 52 m², so   Area A = length × width = (2w – 5) × w = 52. This gives the equation:   2w² – 5w = 52   2w² – 5w – 52 = 0 Now, solve the quadratic equation 2w² – 5w – 52 = 0. Step 1: Calculate the discriminant:   D = b² – 4ac = (–5)² – 4 × 2 × (–52) = 25 + 416 = 441. Step 2: Find the square root of D:   √441 = 21. Step 3: Use the quadratic formula:   w = [–b ± √D] / (2a) = [5 ± 21] / 4. We have two potential solutions:   w = (5 + 21) / 4 = 26/4 = 6.5  or  w = (5 – 21) / 4 = (–16)/4 = –4. Since width cannot be negative, we discard –4. Thus,   w = 6.5 m. Now, find the length:   L = 2w – 5 = 2(6.5) – 5 = 13 – 5 = 8 m. Answer:   Width = 6.5 m   Length = 8 m

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the dimensions of the rectangle, let's first define the width as \( w \). According to the problem, the length \( l \) is \( 2w - 5 \). Since the area \( A \) of a rectangle is given by \( A = l \times w \), we can set up the equation: \[ 52 = (2w - 5) \times w \] Solving this quadratic equation will give us the width, which we can then substitute to find the length. Once you calculate \( w \) (width), plug it back into \( l = 2w - 5 \) to find the length! Imagine living in ancient Mesopotamia where shapes and dimensions were essential for agriculture! Back then, the Babylonians were pioneering what we now call geometry to solve problems just like yours. They used a base-60 counting system, wrapping geometry into their daily lives laying the foundation for mathematics today. If you're curious about shapes and dimensions, diving into geometry isn't just about formulas. Check out "Geometry: Euclid and Beyond" by Robin Hartshorne. It takes you on a historical journey through the development of geometric principles, making connections from ancient to modern times. You’ll be amazed at how these concepts have evolved!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad