Pregunta
upstudy study bank question image url

Which explicit formula describes the sequence? \( \begin{array}{l}-1,3,7,11, \ldots \\ f(n)=-1+4(n-1) \\ f(n)=(4)(-1)^{n-1} \\ f(n)=(-1)(4)^{n-1} \\ f(n)=4-1(n-1)\end{array} \)

Ask by Santiago Griffin. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The explicit formula that describes the sequence is \( f(n) = -1 + 4(n - 1) \).

Solución

We are given the sequence -1, 3, 7, 11, … To find the explicit formula, we first note that the common difference between consecutive terms is: 3 - (-1) = 4 7 - 3 = 4 11 - 7 = 4 This indicates that the sequence is arithmetic with a common difference of 4 and the first term a₁ = -1. The general formula for the nth term of an arithmetic sequence is:   f(n) = a₁ + d(n - 1) Plugging in the values, we have:   f(n) = -1 + 4(n - 1) Checking the formula:   For n = 1: f(1) = -1 + 4(0) = -1   For n = 2: f(2) = -1 + 4(1) = 3   For n = 3: f(3) = -1 + 4(2) = 7   For n = 4: f(4) = -1 + 4(3) = 11 The first option, f(n) = -1 + 4(n - 1), correctly describes the sequence.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To describe the sequence \(-1, 3, 7, 11, \ldots\), we first recognize that it's an arithmetic sequence where the first term is \(-1\) and the common difference is \(4\). Thus, to find the \(n\)-th term, we can start from the first term and add the product of the common difference and \(n-1\): \[ f(n) = -1 + 4(n - 1) \] This explicit formula correctly captures the \(n\)-th term of the sequence as it starts with \(-1\) and increases by \(4\) for each subsequent term. In a real-world application, understanding sequences like this can help in predicting outcomes in various scenarios, such as budgeting or growth patterns. For example, if a business starts with a deficit of $1, and each month it gains $4, then using the explicit formula to find out how much the business will have after \(n\) months can provide valuable insights for planning future investments or expenditures!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad