1. Assume that \( x \) and \( y \) are two random variables having the joint pdf
\[ f(x, y)=\left\{\begin{array}{ll}\frac{2 x+y}{4} & 0
Ask by Cole Lynch. in Nigeria
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find \( P(x+y \leq 1) \), we need to integrate the joint probability density function \( f(x, y) \) over the region where \( x + y \leq 1 \). 1. First, we identify the limits for \( x \) and \( y \): - Given \( 0 < x < 1 \) and \( 0 < y < 2 \), the inequality \( x + y \leq 1 \) restricts \( y \) for a given \( x \) as \( y \leq 1 - x \). - Therefore, the limits for \( y \) will be from 0 to \( 1 - x \). 2. Next, we find the region in the \(xy\) plane where the inequalities hold: - \( y \) must also be less than 2, but since \( 1 - x \leq 1 \) whenever \( x \) is between 0 and 1, it is feasible that \( y \) stops at \( 1 - x \). 3. The limits of integration for \( x \) will be from 0 to 1, while for \( y \) will be from 0 to \( 1 - x \). 4. Now, let’s set up the double integral: \[ P(x+y \leq 1) = \int_0^1 \int_0^{1-x} \frac{2x + y}{4} \, dy \, dx \] 5. Now we solve the inner integral: \[ \int_0^{1-x} \frac{2x + y}{4} \, dy = \frac{1}{4} \left[ 2xy + \frac{y^2}{2} \right]_0^{1-x} = \frac{1}{4} \left[ 2x(1-x) + \frac{(1-x)^2}{2} \right] \] Calculating that: - \( 2x(1-x) = 2x - 2x^2 \) - \( \frac{(1-x)^2}{2} = \frac{1 - 2x + x^2}{2} \) Combining these: \[ = \frac{1}{4} \left( 2x - 2x^2 + \frac{1 - 2x + x^2}{2} \right) = \frac{1}{4} \left( \frac{4x - 4x^2 + 1 - 2x + x^2}{2} \right) = \frac{1}{4} \left( \frac{2x - 3x^2 + 1}{2} \right) = \frac{1}{8} (2x - 3x^2 + 1) \] 6. Now, we integrate this result with respect to \( x \): \[ P(x+y \leq 1) = \int_0^1 \frac{1}{8} (2x - 3x^2 + 1) dx \] Calculating the integral: \[ = \frac{1}{8} \left[ x^2 - x^3 + x \right]_0^1 = \frac{1}{8} \left[ 1 - 1 + 1 - 0 \right] = \frac{1}{8} (1) = \frac{1}{8} \] Thus, the probability \( P(x+y \leq 1) = \frac{1}{8} \).
