Pregunta
upstudy study bank question image url

2. In an exponential sequence, the sixth term is eight times the third term and the sum of the seventh and eighth term is 192 . Find a. the common ratio. b. the first term. c. the sum of the fifth term to the eleventh term, inclusive.

Ask by Ball Santiago. in Ghana
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The common ratio is 2. b. The first term is 1. c. The sum of the 5th to 11th terms is 2032.

Solución

Let the exponential (geometric) sequence have the first term a and common ratio r. Then, the nth term is represented by:   Term n = a · r^(n–1) Step 1. Use the condition that the 6th term is eight times the 3rd term.   6th term = a · r^(6–1) = a · r⁵   3rd term = a · r^(3–1) = a · r² The condition gives:   a · r⁵ = 8 · (a · r²) Assuming a ≠ 0 and r ≠ 0, cancel a and simplify:   r⁵ = 8r²   r^(5–2) = 8  ⟹  r³ = 8   r = ∛8 = 2 So, the common ratio is 2. Step 2. Use the condition that the sum of the 7th and 8th terms is 192.   7th term = a · r^(7–1) = a · r⁶ = a · 2⁶ = 64a   8th term = a · r^(8–1) = a · r⁷ = a · 2⁷ = 128a Their sum is:   64a + 128a = 192a Setting the sum equal to 192:   192a = 192  ⟹  a = 1 So, the first term is 1. Step 3. Compute the sum of the terms from the 5th to the 11th term, inclusive. The 5th term is:   5th term = a · r^(5–1) = 1 · 2⁴ = 16 The 11th term is:   11th term = a · r^(11–1) = 1 · 2¹⁰ = 1024 There are 7 terms in total (from 5th through 11th). The sum of a geometric series is given by:   S = first term · (r^n – 1) / (r – 1) Here, first term = 16, r = 2, and n = 7. Calculate:   S = 16 · (2⁷ – 1) / (2 – 1) = 16 · (128 – 1) / 1 = 16 · 127 = 2032 Thus, the sum from the 5th to the 11th term is 2032. Summary: a. The common ratio is 2. b. The first term is 1. c. The sum of the 5th to 11th terms is 2032.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let's dive into this exponential sequence problem! First, we know an exponential sequence can be defined as \( a, ar, ar^2, ar^3, ar^4, \ldots \), where \( a \) is the first term and \( r \) is the common ratio. Given that the sixth term is eight times the third term, we can express this relationship: \[ ar^5 = 8(ar^2) \] Dividing by \( ar^2 \) (assuming \( a \neq 0 \) and \( r \neq 0 \)), we get: \[ r^3 = 8 \implies r = 2 \] Next, the sum of the seventh and eighth terms equals 192: \[ ar^6 + ar^7 = 192 \implies ar^6(1 + r) = 192 \] Substituting \( r = 2 \): \[ ar^6(1 + 2) = 192 \implies 3a(2^6) = 192 \implies 3a(64) = 192 \implies a = 1 \] Now we have \( a = 1 \) and \( r = 2 \). To find the sum of the fifth to the eleventh term inclusive: - Fifth term: \( ar^4 = 1 \cdot 2^4 = 16 \) - Sixth term: \( ar^5 = 32 \) - Seventh term: \( ar^6 = 64 \) - Eighth term: \( ar^7 = 128 \) - Ninth term: \( ar^8 = 256 \) - Tenth term: \( ar^9 = 512 \) - Eleventh term: \( ar^{10} = 1024 \) The sum \( = 16 + 32 + 64 + 128 + 256 + 512 + 1024 = 2016 \). So the answers are: a. The common ratio \( r = 2 \). b. The first term \( a = 1 \). c. The sum from the fifth to the eleventh term is \( 2016 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad