Pregunta
upstudy study bank question image url

Two blocks with masses \( M_{1} \) and \( M_{2} \) hang one under the other. For this problem, take the positive direction to be upward, and use \( g \) for the magnitude of the free-fall \( \begin{array}{ll}\text { acceleration. (Figure 1) } & \text { Part B } \\ & \text { Find } T_{1}, \text { the tension in the upper rope. } \\ M_{1}, M_{2} \text {, and } g .\end{array} \)

Ask by Bolton Bright. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The tension in the upper rope, T₁, is equal to the sum of the masses of both blocks multiplied by the acceleration due to gravity: T₁ = (M₁ + M₂)g.

Solución

To solve for T₁, the tension in the upper rope, we first draw free‐body diagrams for each block and then apply Newton’s first law (since the blocks are in equilibrium). Step 1. Analyze block M₂ (the bottom block): • For M₂, the only forces acting are the tension T₂ upward from the rope connecting it to M₁ and its weight M₂g downward. • Since M₂ is at rest (acceleration = 0), the net force is zero:   T₂ − M₂g = 0   Thus, T₂ = M₂g. Step 2. Analyze block M₁ (the upper block): • For M₁, the forces are:   – T₁ upward (the tension in the upper rope),   – its weight M₁g downward, and   – the downward tension T₂ (which holds M₂). • Again, with zero acceleration:   T₁ − M₁g − T₂ = 0   So, T₁ = M₁g + T₂. • Substitute the expression for T₂ from Step 1:   T₁ = M₁g + M₂g = (M₁ + M₂)g. Thus, the tension in the upper rope is:   T₁ = (M₁ + M₂)g This answer is expressed in terms of M₁, M₂, and g, with the convention that upward forces are positive.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the tension \( T_{1} \) in the upper rope connecting the two masses \( M_{1} \) and \( M_{2} \), we need to account for both masses and the gravitational force acting on them. The system is in equilibrium if we consider that both blocks are either at rest or moving with constant velocity. The tension \( T_{1} \) exerted on the upper mass \( M_{1} \) must counteract the weight of both \( M_{1} \) and \( M_{2} \). Therefore, we can write the equation for the forces acting on the upper mass: \[ T_{1} = M_{1} g + M_{2} g \] This simplifies to: \[ T_{1} = (M_{1} + M_{2}) g \] This formula gives us the tension in the upper rope in terms of the masses and the gravitational acceleration. Now, if we think about this in real-world terms, consider that this setup resembles a simple pulley system, where understanding the forces in such a system can help us design elevators or cranes. By analyzing the tensions correctly, engineers ensure that structures have the strength needed to support these forces without failing! Additionally, a common mistake when solving for tensions in such problems is forgetting to consider both weights acting on the upper mass, or misinterpreting directionality. Remember that the tension is acting upward against the force of gravity pulling downward! This can lead to incorrect results if not addressed properly.

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad