Pregunta
upstudy study bank question image url

You want to be able to withdraw \( \$ 50,000 \) from your account each year for 30 years after you retire. You expect to retire in 25 years. If your account earns \( 10 \% \) interest, how much will you need to deposit each year until retirement to achieve your retirement goals? \( \$ 4792.30 \) Round your answer to the nearest cent.

Ask by Luna Wells. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

You need to deposit approximately \$4,792.30 each year until retirement to achieve your retirement goals.

Solución

We have two steps: Step 1. Determine the lump sum needed at retirement. You wish to withdraw $50,000 each year for 30 years (an annuity) at an annual interest rate of 10%. The present value of this annuity (at retirement) is given by   Lump Sum = 50,000 × [(1 − 1/1.1^30) / 0.10]. Calculating 1.1^30 (using a calculator) gives approximately 17.4494, so   (1 − 1/17.4494) ≈ 1 − 0.0573 = 0.9427,   Then, Lump Sum ≈ 50,000 × (0.9427/0.10) = 50,000 × 9.427 = 471,350. Step 2. Determine the annual deposit required from now until retirement. You plan to make annual deposits for 25 years into an account earning 10% per year. The future value of an annuity-immediate is   Future Value = Deposit × [(1.1^25 − 1) / 0.10]. You need this to equal the lump sum calculated in Step 1. Hence, set   Deposit × [(1.1^25 − 1) / 0.10] = 471,350. Solve for Deposit:   Deposit = 471,350 × [0.10 / (1.1^25 − 1)]. Using a calculator, 1.1^25 ≈ 10.834705 so that   (1.1^25 − 1) ≈ 9.834705. Then,   Deposit ≈ 471,350 × (0.10 / 9.834705)       ≈ 471,350 × 0.01017       ≈ $4792.30. Thus, you need to deposit approximately $4,792.30 each year for 25 years to meet your retirement goals.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To achieve your goal of withdrawing $50,000 per year for 30 years, you'll need to first determine the total amount you'll need at the time of retirement. This can be calculated using the formula for the present value of an annuity. Assuming a 10% interest rate, you will require approximately $545,608.94 at the start of your retirement to make those withdrawals. To find out how much to deposit each year until retirement, you will utilize the future value of annuity formula to solve for the annual deposit amount. If you deposit \(X\) each year for 25 years, the future value of those deposits at retirement would equal the amount you've calculated. Solving that equation gives you the approximate annual deposit needed: $4,792.30.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad