Pregunta
upstudy study bank question image url

30. A cylindrical diesel tank is 1.25 meters high and has a radius of 0.60 meter. If the tank can only be filled to an \( 85 \% \) capacity to allow for expansion of the fuel, what is the maximum volume of fuel? Round to the nearest hundredth. \( \begin{array}{ll}\text { A } 4.71 \mathrm{~m}^{3} & \text { C } 1.41 \mathrm{~m}^{3} \\ \text { B } 2.01 \mathrm{~m}^{3} & \text { D } 1.20 \mathrm{~m}^{3}\end{array} \)

Ask by Mckenzie Guzman. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The maximum volume of fuel is 1.20 m³.

Solución

The cylinder's volume is given by V = πr²h, where r = 0.60 m and h = 1.25 m. Step 1: Compute the volume of the tank.   V_full = π(0.60)²(1.25) = π(0.36)(1.25) = π(0.45) ≈ 3.1416 × 0.45 ≈ 1.41 m³. Step 2: Since the tank is only filled to 85% capacity, the maximum volume of fuel is:   V_fuel = 0.85 × 1.41 m³ ≈ 1.20 m³. Thus, the answer is 1.20 m³ (Option D).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the maximum volume of fuel in the cylindrical diesel tank, we first calculate the total volume of the cylinder using the formula: \[ V = \pi r^2 h \] Where \( r \) is the radius and \( h \) is the height. Plugging in the values: \[ V = \pi (0.60)^2 (1.25) \approx \pi (0.36)(1.25) \approx \pi (0.45) \approx 1.41 \, \text{m}^3\,. \] Now, since the tank can only be filled to \( 85\% \) capacity, we calculate: \[ \text{Max volume of fuel} = 1.41 \times 0.85 \approx 1.20 \, \text{m}^3. \] Therefore, the maximum volume of fuel is \( 1.20 \, \text{m}^3 \), corresponding to option D. Now, let's dive into some interesting tidbits related to this topic! Did you know that the concept of using cylindrical tanks for storage dates back to ancient civilizations? These cylindrical shapes are considered optimal for containing liquids because they minimize stress on the structure and maximize volume due to their geometric properties. Romans and ancient Greeks already understood this principle when they began using rounded containers! If you’re ever in a pinch while tackling similar volume calculations, remember to double-check your radius and height measurements! A common mistake is to confuse radius (the distance from the center to the edge) with diameter (the total width across the cylinder). Always verify which measurement you're using to avoid errors in calculating the volume!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad