\( \begin{array}{l}1.2 .1 \quad\left(\frac{125 x^{7}}{x}\right)^{\frac{2}{3}} \\ 1.2 .2 \quad(\sqrt{3}+3)^{2}-2 \sqrt{27} \\ \text { Solve for } x \text { and } y \text { simultancously: } \\ y=x+2 \\ x y+y^{2}-10(x+1)=0\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To tackle the expression \( \left(\frac{125 x^{7}}{x}\right)^{\frac{2}{3}} \), first simplify inside the parentheses. You can reduce \( \frac{125 x^{7}}{x} \) to \( 125 x^{6} \) because \( x^{7} \div x = x^{6} \). Now, take the cube root and square it: \( (125 x^{6})^{\frac{2}{3}} = 125^{\frac{2}{3}} x^{6 \cdot \frac{2}{3}} = 25 x^{4} \). Now, for \( (\sqrt{3}+3)^{2}-2 \sqrt{27} \), start by calculating \( (\sqrt{3}+3)^{2} = 3 + 6\sqrt{3} + 9 = 12 + 6\sqrt{3} \). Next, simplify \( 2 \sqrt{27} = 2 \cdot 3\sqrt{3} = 6\sqrt{3} \). Combining these results gives \( 12 + 6\sqrt{3} - 6\sqrt{3} = 12 \). For the simultaneous equations \( y = x + 2 \) and \( xy + y^{2} - 10(x + 1) = 0 \), substitute \( y \) in the second equation: \( x(x + 2) + (x + 2)^{2} - 10(x + 1) = 0 \). Expanding yields \( x^{2} + 2x + x^{2} + 4x + 4 - 10x - 10 = 0 \), simplifying to \( 2x^{2} - 4x - 6 = 0 \). Solving this quadratic gives \( x = 3 \) or \( x = -1 \). Thus, substituting back, \( y = 5 \) or \( y = 1 \), generating solution pairs \( (3, 5) \) and \( (-1, 1) \).
