Pregunta
upstudy study bank question image url

Solve \( \frac{x}{3}-\frac{1}{4}(x+2)>3 x-2 \frac{1}{5} \), illustrate the solution on a number line.

Ask by Parry Harmon. in Ghana
Feb 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the inequality \( \frac{x}{3} - \frac{1}{4}(x + 2) > 3x - 2 \frac{1}{5} \) is all real numbers \( x \) such that \( x < \frac{102}{175} \) (approximately 0.583). On a number line, this is represented by shading all values to the left of \( \frac{102}{175} \) with an open circle at that point.

Solución

We wish to solve   (x/3) – (1/4)(x + 2) > 3x – 2 1/5. Step 1. Rewrite mixed numbers as fractions. Notice that 2 1/5 = 2 + 1/5 = (10 + 1)/5 = 11/5. So the inequality becomes:   x/3 – (1/4)(x + 2) > 3x – 11/5. Step 2. Simplify the left-hand side. Expand the left-hand side term:   (1/4)(x + 2) = x/4 + 2/4 = x/4 + 1/2. Thus, we have:   x/3 – x/4 – 1/2 > 3x – 11/5. Step 3. Combine x/3 – x/4. Find a common denominator:   x/3 – x/4 = (4x – 3x)/12 = x/12. So the inequality becomes:   x/12 – 1/2 > 3x – 11/5. Step 4. Eliminate fractions by multiplying through by the least common multiple. The denominators present are 12, 2, and 5. The LCM of 12, 2, and 5 is 60. Multiply every term by 60:   60·(x/12) – 60·(1/2) > 60·(3x) – 60·(11/5). Compute each term:   60·(x/12) = 5x,   60·(1/2) = 30,   60·(3x) = 180x,   60·(11/5) = 132. The inequality becomes:   5x – 30 > 180x – 132. Step 5. Solve for x. Subtract 5x from both sides:   –30 > 175x – 132. Add 132 to both sides:   102 > 175x. Divide both sides by 175:   102/175 > x  or equivalently x < 102/175. Step 6. Interpret the result. The solution to the inequality is all real numbers x such that x < 102/175. In decimal form, 102/175 ≈ 0.583. Step 7. Illustrate on a number line.   • Draw a horizontal line.   • Mark the point 102/175 (approximately 0.583).   • Since x must be less than 102/175, draw an open circle (or hollow dot) at 102/175 to indicate that this point is not included.   • Shade the line to the left of the point, representing all numbers less than 102/175. Final Answer:   x < 102/175. This is the solution set, both algebraically and as shown on the number line.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the inequality \( \frac{x}{3} - \frac{1}{4}(x+2) > 3x - 2 \frac{1}{5} \), let’s start by simplifying both sides. First, simplify the left side: \[ \frac{x}{3} - \frac{1}{4}(x + 2) = \frac{x}{3} - \frac{x}{4} - \frac{1}{2} \] To combine \( \frac{x}{3} \) and \( \frac{x}{4} \), we need a common denominator, which is 12: \[ \frac{x}{3} = \frac{4x}{12}, \quad \frac{x}{4} = \frac{3x}{12} \] So, \[ \frac{x}{3} - \frac{x}{4} = \frac{4x}{12} - \frac{3x}{12} = \frac{x}{12} \] Thus, we have: \[ \frac{x}{12} - \frac{1}{2} > 3x - 2 \frac{1}{5} \] Now, simplify the right side: \[ 2 \frac{1}{5} = \frac{11}{5}, \quad \text{so, } 3x - 2 \frac{1}{5} = 3x - \frac{11}{5} \] Now, we can rewrite our inequality as: \[ \frac{x}{12} - \frac{1}{2} > 3x - \frac{11}{5} \] Next, let’s eliminate the fractions by multiplying the entire inequality by 60 (the least common multiple of 12, 2, and 5): \[ 60 \left(\frac{x}{12}\right) - 60 \left(\frac{1}{2}\right) > 60 \left(3x - \frac{11}{5}\right) \] This simplifies to: \[ 5x - 30 > 180x - 132 \] Now, combine like terms: \[ 5x + 132 > 180x + 30 \] Rearranging gives: \[ 132 - 30 > 180x - 5x \] \[ 102 > 175x \] Dividing by 175: \[ \frac{102}{175} > x \] Or, equivalently: \[ x < \frac{102}{175} \] Now, to illustrate this on a number line, you would draw a line and put an open circle at \( \frac{102}{175} \) (approximately 0.583) to indicate that this value is not included in the solution. Now, on the number line, everything to the left of \( \frac{102}{175} \) will be shaded, representing all the valid \( x \) values for the inequality. In summary, the solution to the inequality \( x < \frac{102}{175} \) represents the set of numbers that satisfy the original inequality.

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad