Pregunta
upstudy study bank question image url

4.6 Identify and apply the appropriate property of integers to determine the value of \( a, b \) and \( c \) in the equations below. Also, write down the name of the property. \[ a \times(b \times 6)=(-2 \times b) \times c \] \( a \times b=c \) Where \( a, b \) and \( c \) are integers.

Ask by Johnston Page. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( a = 0 \) or \( b = 0 \), and \( c = 0 \).

Solución

To solve the equations and identify the properties of integers involved, let's analyze the given equations step by step. ### Given Equations: 1. \( a \times (b \times 6) = (-2 \times b) \times c \) 2. \( a \times b = c \) ### Step 1: Simplify the First Equation We can use the associative property of multiplication, which states that the way in which numbers are grouped in multiplication does not change the product. This allows us to rewrite the first equation as follows: \[ a \times (b \times 6) = (a \times b) \times 6 \] Now substituting \( c \) from the second equation into the first equation: \[ (a \times b) \times 6 = (-2 \times b) \times c \] Substituting \( c \) gives us: \[ (a \times b) \times 6 = (-2 \times b) \times (a \times b) \] ### Step 2: Factor Out \( a \times b \) Assuming \( a \times b \neq 0 \), we can divide both sides by \( a \times b \): \[ 6 = -2 \] This is a contradiction, which implies that \( a \times b = 0 \). Therefore, either \( a = 0 \) or \( b = 0 \). ### Step 3: Determine Values of \( a, b, c \) 1. If \( a = 0 \): - From the second equation \( 0 \times b = c \) implies \( c = 0 \). - Thus, \( a = 0, b \) can be any integer, and \( c = 0 \). 2. If \( b = 0 \): - From the second equation \( a \times 0 = c \) implies \( c = 0 \). - Thus, \( b = 0, a \) can be any integer, and \( c = 0 \). ### Conclusion The values of \( a, b, c \) can be summarized as: - \( a = 0 \) or \( b = 0 \) (both lead to \( c = 0 \)). ### Properties Used 1. **Associative Property of Multiplication**: \( a \times (b \times c) = (a \times b) \times c \) 2. **Multiplicative Property of Zero**: If \( a \times b = 0 \), then either \( a = 0 \) or \( b = 0 \). Thus, the final values are: - \( a = 0 \) or \( b = 0 \) - \( c = 0 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for \( a, b, \) and \( c \) in the given equations, we can start by applying the associative property of multiplication, which states that the way in which factors are grouped does not change the product. From the first equation \( a \times(b \times 6)=(-2 \times b) \times c \), we can rearrange it as \( (a \times b) \times 6 = (-2 \times b) \times c \). Here, if we choose \( b = 0 \), then both sides equal 0, which gives us \( a = 0 \) and \( c = 0 \). The second equation \( a \times b = c \) holds true since \( 0 \times 0 = 0 \). Remember, every time you work with integers, setting one of them to zero can often simplify your calculations and lead to straightforward solutions. Just be cautious about overlooking other integer solutions!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad