It is given that \( y=\frac{\ln \left(3 x^{2}-1\right)}{x+2} \), for \( x>\frac{1}{\sqrt{3}} \). When \( x=1, y \) is increasing at the rate of \( h \) units per second. Find, in terms of \( h \), the corresponding rate of change in \( x \), giving your answer in exact form.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the rate of change of \( x \) in terms of \( h \) when \( x = 1 \), we start by differentiating \( y \) with respect to \( x \). Given \( y = \frac{\ln(3x^2 - 1)}{x + 2} \), we apply the quotient rule for differentiation: \[ \frac{dy}{dx} = \frac{(x + 2) \cdot \frac{d}{dx}[\ln(3x^2 - 1)] - \ln(3x^2 - 1) \cdot \frac{d}{dx}[x + 2]}{(x + 2)^2} \] Calculating \( \frac{d}{dx}[\ln(3x^2 - 1)] \) using the chain rule gives: \[ \frac{d}{dx}[\ln(3x^2 - 1)] = \frac{1}{3x^2 - 1} \cdot (6x) = \frac{6x}{3x^2 - 1} \] The differentiated form of \( x + 2 \) is simply \( 1 \). Hence, substituting in the quotient rule: \[ \frac{dy}{dx} = \frac{(x + 2) \cdot \frac{6x}{3x^2 - 1} - \ln(3x^2 - 1) \cdot 1}{(x + 2)^2} \] \[ = \frac{(6x(x + 2)) / (3x^2 - 1) - \ln(3x^2 - 1)}{(x + 2)^2} \] Now, we find \( \frac{dy}{dx} \) at \( x = 1 \). Calculating \( y \) at \( x = 1 \): \[ y(1) = \frac{\ln(3(1)^2 - 1)}{1 + 2} = \frac{\ln(2)}{3} \] Then we need to compute the components of \( \frac{dy}{dx} \): 1. Evaluating \( 3x^2 - 1 \) at \( x = 1 \): \[ 3(1)^2 - 1 = 2 \] 2. Thus, \( \ln(3(1)^2 - 1) = \ln(2) \), and: \[ \frac{dy}{dx} = \frac{(6 \cdot 1 (1 + 2))/(2) - \ln(2)}{(1 + 2)^2} \] \[ = \frac{(18/2) - \ln(2)}{9} = \frac{9 - \ln(2)}{9} = 1 - \frac{\ln(2)}{9} \] Now we have that \( \frac{dy}{dx} = 1 - \frac{\ln(2)}{9} \) at \( x = 1 \). Using the chain rule to relate \( \frac{dy}{dt} \), \( \frac{dx}{dt} \), and \( \frac{dy}{dx} \): \[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \] Since \( \frac{dy}{dt} = h \): \[ h = \left(1 - \frac{\ln(2)}{9}\right) \cdot \frac{dx}{dt} \] Rearranging gives: \[ \frac{dx}{dt} = \frac{h}{1 - \frac{\ln(2)}{9}} \] Thus, the corresponding rate of change in \( x \) in terms of \( h \) is: \[ \frac{dx}{dt} = \frac{9h}{9 - \ln(2)} \] This is the rate of change of \( x \) when \( x = 1 \), expressed in terms of \( h \).
