Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l l } { x + y = 4 } & { 3 x - 4 y = 1 } \\ { 2 x - y = 5 } & { 8 } \\ { a - 2 b = 9 } & { 3 x + 2 y = 10 } \\ { 2 a + 3 b = 4 } & { 4 x - y = 6 } \end{array} \right. \)

Ask by Howell Thornton. in Benin
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solutions are: - For the first system: \( x = \frac{17}{7} \) and \( y = \frac{11}{7} \). - For the second system: \( a = 5 \) and \( b = -2 \).

Solución

It looks like you have provided a system of equations. However, the formatting seems a bit unclear, as it appears to be a mix of different systems. Let's break it down and solve the systems of equations separately. ### System 1: 1. \( x + y = 4 \) 2. \( 3x - 4y = 1 \) ### System 2: 1. \( 2x - y = 5 \) 2. \( 8 \) (This seems to be a standalone number, not an equation) ### System 3: 1. \( a - 2b = 9 \) 2. \( 3x + 2y = 10 \) ### System 4: 1. \( 2a + 3b = 4 \) 2. \( 4x - y = 6 \) I will solve the first and second systems of equations, as the second system does not have a valid equation. The third and fourth systems will be solved together as they involve the variables \( a \) and \( b \). Let's proceed with solving these systems. ### Solving System 1: 1. \( x + y = 4 \) 2. \( 3x - 4y = 1 \) ### Solving System 3 and 4: 1. \( a - 2b = 9 \) 2. \( 2a + 3b = 4 \) I will solve these systems now. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}x+y=4\\3x-4y=1\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=4-y\\3x-4y=1\end{array}\right.\) - step2: Substitute the value of \(x:\) \(3\left(4-y\right)-4y=1\) - step3: Simplify: \(12-7y=1\) - step4: Move the constant to the right side: \(-7y=1-12\) - step5: Subtract the numbers: \(-7y=-11\) - step6: Change the signs: \(7y=11\) - step7: Divide both sides: \(\frac{7y}{7}=\frac{11}{7}\) - step8: Divide the numbers: \(y=\frac{11}{7}\) - step9: Substitute the value of \(y:\) \(x=4-\frac{11}{7}\) - step10: Calculate: \(x=\frac{17}{7}\) - step11: Calculate: \(\left\{ \begin{array}{l}x=\frac{17}{7}\\y=\frac{11}{7}\end{array}\right.\) - step12: Check the solution: \(\left\{ \begin{array}{l}x=\frac{17}{7}\\y=\frac{11}{7}\end{array}\right.\) - step13: Rewrite: \(\left(x,y\right) = \left(\frac{17}{7},\frac{11}{7}\right)\) Solve the system of equations \( a - 2b = 9; 2a + 3b = 4 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}a-2b=9\\2a+3b=4\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}a=9+2b\\2a+3b=4\end{array}\right.\) - step2: Substitute the value of \(a:\) \(2\left(9+2b\right)+3b=4\) - step3: Simplify: \(18+7b=4\) - step4: Move the constant to the right side: \(7b=4-18\) - step5: Subtract the numbers: \(7b=-14\) - step6: Divide both sides: \(\frac{7b}{7}=\frac{-14}{7}\) - step7: Divide the numbers: \(b=-2\) - step8: Substitute the value of \(b:\) \(a=9+2\left(-2\right)\) - step9: Calculate: \(a=5\) - step10: Calculate: \(\left\{ \begin{array}{l}a=5\\b=-2\end{array}\right.\) - step11: Check the solution: \(\left\{ \begin{array}{l}a=5\\b=-2\end{array}\right.\) - step12: Rewrite: \(\left(a,b\right) = \left(5,-2\right)\) Here are the solutions for the systems of equations: ### Solution for System 1: 1. \( x + y = 4 \) 2. \( 3x - 4y = 1 \) The solution is: \[ (x, y) = \left( \frac{17}{7}, \frac{11}{7} \right) \] ### Solution for System 3: 1. \( a - 2b = 9 \) 2. \( 2a + 3b = 4 \) The solution is: \[ (a, b) = (5, -2) \] ### Summary of Results: - For the first system, \( x \) and \( y \) are approximately \( 2.43 \) and \( 1.57 \) respectively. - For the second system, \( a \) is \( 5 \) and \( b \) is \( -2 \). If you have any further questions or need additional assistance, feel free to ask!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let’s have a bit of fun diving into these simultaneous equations! Did you know that these types of equations have been around since ancient civilizations? Ancient Egyptians and Babylonians tackled such problems using geometric and numeric methods, way before technology came into play. They laid the groundwork for algebra as we know it today! Now, moving on to practical applications, solving equations like these is crucial in fields such as engineering, economics, and even computer science. For instance, engineers use systems of equations to determine forces in structures, ensuring they don’t crumble under pressure. So, when you encounter these equations, remember that you’re channeling knowledge dating back to the ancients while equipping yourself with skills vital in today’s world! How cool is that?

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad