\[ -\frac{4}{3} x+\frac{7}{5}=-2 x-\frac{4}{5} \] Simplify your answer as much as possible. \( x=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To solve the equation \(-\frac{4}{3} x + \frac{7}{5} = -2 x - \frac{4}{5}\), we first want to isolate \( x \). We can start by getting all \( x \) terms on one side and the constants on the other. First, we can add \( 2x \) to both sides: \[ -\frac{4}{3} x + 2x + \frac{7}{5} = -\frac{4}{5} \] Convert \( 2x \) to the same fraction form: \[ 2x = \frac{6}{3} x \] Now, combine terms: \[ -\frac{4}{3} x + \frac{6}{3} x = \frac{2}{3} x \] Now the equation looks like this: \[ \frac{2}{3} x + \frac{7}{5} = -\frac{4}{5} \] Next, let's isolate the \( x \) term by subtracting \(\frac{7}{5}\) from both sides: \[ \frac{2}{3} x = -\frac{4}{5} - \frac{7}{5} \] Combine the constants on the right: \[ \frac{2}{3} x = -\frac{11}{5} \] Now multiply both sides by \(\frac{3}{2}\) to solve for \( x \): \[ x = -\frac{11}{5} \cdot \frac{3}{2} = -\frac{33}{10} \] Thus, the solution to the equation is: \[ x = -\frac{33}{10} \]
