Pregunta
upstudy study bank question image url

\( \begin{array}{l} \text { Find the general solutions to these equations. }\\ \begin{array}{ll} 1 & \sin \left(x-16^{\circ}\right)=0,616 \\ 2 & \cos 2 x=0,789 \\ 3 & \cos 3 x=-0,123 \\ 4 & \tan \left(x+56^{\circ}\right)=7,56 \\ 5 & \tan \frac{x}{2}=-1,421 \\ 6 & \sin \left(2 x+44^{\circ}\right)=-0,708 \\ 7 & 3 \cos \left(x-15^{\circ}\right)+1=-0,456 \\ 8 & 2 \tan \left(2 x-10^{\circ}\right)=10,67 \\ \hline \end{array} \end{array} \)

Ask by Nichols Rose. in South Africa
Mar 08,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the general solutions for the given equations: 1. \( \sin(x - 16^\circ) = 0.616 \) \[ x \approx -0.330808 + k\pi \quad \text{or} \quad x \approx 0.330808 + k\pi, \quad k \in \mathbb{Z} \] 2. \( \cos(2x) = 0.789 \) \[ x \approx -0.564703 + \frac{2k\pi}{3} \quad \text{or} \quad x \approx 0.564703 + \frac{2k\pi}{3}, \quad k \in \mathbb{Z} \] 3. \( \cos(3x) = -0.123 \) \[ x \approx -0.564703 + \frac{2k\pi}{3} \quad \text{or} \quad x \approx 0.564703 + \frac{2k\pi}{3}, \quad k \in \mathbb{Z} \] 4. \( \tan(x + 56^\circ) = 7.56 \) \[ x \approx -54.560715 + k\pi, \quad k \in \mathbb{Z} \] 5. \( \tan\left(\frac{x}{2}\right) = -1.421 \) \[ x \approx -1.915143 + 2k\pi, \quad k \in \mathbb{Z} \] 6. \( \sin(2x + 44^\circ) = -0.708 \) \[ x \approx -22.393331 + k\pi \quad \text{or} \quad x \approx -20.035873 + k\pi, \quad k \in \mathbb{Z} \] 7. \( 3\cos(x - 15^\circ) + 1 = -0.456 \) \[ x = -\arccos\left(-\frac{182}{375}\right) + 15 + 2k\pi \quad \text{or} \quad x = \arccos\left(-\frac{182}{375}\right) + 15 + 2k\pi, \quad k \in \mathbb{Z} \] 8. \( 2\tan(2x - 10^\circ) = 10.67 \) \[ x = \frac{\arctan\left(\frac{1067}{200}\right) + 10}{2} + \frac{k\pi}{2}, \quad k \in \mathbb{Z} \] These solutions provide the general forms for each equation, where \( k \) is any integer.

Solución

Solve the equation by following steps: - step0: Solve for \(x\): \(\tan\left(x+56\right)=7.56\) - step1: Find the domain: \(\tan\left(x+56\right)=7.56,x\neq \frac{37\pi -112}{2}+k\pi ,k \in \mathbb{Z}\) - step2: Use the inverse trigonometric function: \(x+56=\arctan\left(7.56\right)\) - step3: Add the period: \(x+56=\arctan\left(7.56\right)+k\pi ,k \in \mathbb{Z}\) - step4: Solve the equation: \(x=\arctan\left(7.56\right)-56+k\pi ,k \in \mathbb{Z}\) - step5: Check if the solution is in the defined range: \(x=\arctan\left(7.56\right)-56+k\pi ,k \in \mathbb{Z},x\neq \frac{37\pi -112}{2}+k\pi ,k \in \mathbb{Z}\) - step6: Find the intersection: \(x=\arctan\left(7.56\right)-56+k\pi ,k \in \mathbb{Z}\) - step7: Simplify: \(x\approx -54.560715+k\pi ,k \in \mathbb{Z}\) Solve the equation \( 2\tan(2x-10^{\text{°}})=10.67 \). Solve the equation by following steps: - step0: Solve for \(x\): \(2\tan\left(2x-10\right)=10.67\) - step1: Find the domain: \(2\tan\left(2x-10\right)=10.67,x\neq \frac{\pi +20}{4}+\frac{k\pi }{2},k \in \mathbb{Z}\) - step2: Multiply both sides: \(2\tan\left(2x-10\right)\times \frac{1}{2}=10.67\times \frac{1}{2}\) - step3: Calculate: \(\tan\left(2x-10\right)=10.67\times \frac{1}{2}\) - step4: Calculate: \(\tan\left(2x-10\right)=\frac{1067}{200}\) - step5: Use the inverse trigonometric function: \(2x-10=\arctan\left(\frac{1067}{200}\right)\) - step6: Add the period: \(2x-10=\arctan\left(\frac{1067}{200}\right)+k\pi ,k \in \mathbb{Z}\) - step7: Solve the equation: \(x=\frac{\arctan\left(\frac{1067}{200}\right)+10}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\) - step8: Check if the solution is in the defined range: \(x=\frac{\arctan\left(\frac{1067}{200}\right)+10}{2}+\frac{k\pi }{2},k \in \mathbb{Z},x\neq \frac{\pi +20}{4}+\frac{k\pi }{2},k \in \mathbb{Z}\) - step9: Find the intersection: \(x=\frac{\arctan\left(\frac{1067}{200}\right)+10}{2}+\frac{k\pi }{2},k \in \mathbb{Z}\) Solve the equation \( \cos(2x)=0.789 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(2x\right)=0.789\) - step1: Use the inverse trigonometric function: \(2x=\arccos\left(0.789\right)\) - step2: Calculate: \(\begin{align}&2x=-\arccos\left(0.789\right)\\&2x=\arccos\left(0.789\right)\end{align}\) - step3: Add the period: \(\begin{align}&2x=-\arccos\left(0.789\right)+2k\pi ,k \in \mathbb{Z}\\&2x=\arccos\left(0.789\right)+2k\pi ,k \in \mathbb{Z}\end{align}\) - step4: Calculate: \(\begin{align}&x=-\frac{\arccos\left(0.789\right)}{2}+k\pi ,k \in \mathbb{Z}\\&2x=\arccos\left(0.789\right)+2k\pi ,k \in \mathbb{Z}\end{align}\) - step5: Calculate: \(\begin{align}&x=-\frac{\arccos\left(0.789\right)}{2}+k\pi ,k \in \mathbb{Z}\\&x=\frac{\arccos\left(0.789\right)}{2}+k\pi ,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}-\frac{\arccos\left(0.789\right)}{2}+k\pi \\\frac{\arccos\left(0.789\right)}{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step7: Simplify: \(x\approx \left\{ \begin{array}{l}-0.330808+k\pi \\0.330808+k\pi \end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( \sin(2x+44^{\text{°}})=-0.708 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\sin\left(2x+44\right)=-0.708\) - step1: Use the inverse trigonometric function: \(2x+44=\arcsin\left(-0.708\right)\) - step2: Calculate: \(\begin{align}&2x+44=-\arcsin\left(0.708\right)\\&2x+44=\arcsin\left(0.708\right)+\pi \end{align}\) - step3: Add the period: \(\begin{align}&2x+44=-\arcsin\left(0.708\right)+2k\pi ,k \in \mathbb{Z}\\&2x+44=\arcsin\left(0.708\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step4: Calculate: \(\begin{align}&x=-\frac{\arcsin\left(0.708\right)+44}{2}+k\pi ,k \in \mathbb{Z}\\&2x+44=\arcsin\left(0.708\right)+\pi +2k\pi ,k \in \mathbb{Z}\end{align}\) - step5: Calculate: \(\begin{align}&x=-\frac{\arcsin\left(0.708\right)+44}{2}+k\pi ,k \in \mathbb{Z}\\&x=\frac{\arcsin\left(0.708\right)+\pi -44}{2}+k\pi ,k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}-\frac{\arcsin\left(0.708\right)+44}{2}+k\pi \\\frac{\arcsin\left(0.708\right)+\pi -44}{2}+k\pi \end{array}\right.,k \in \mathbb{Z}\) - step7: Simplify: \(x\approx \left\{ \begin{array}{l}-22.393331+k\pi \\-20.035873+k\pi \end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( \tan\frac{x}{2}=-1.421 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\tan\left(\frac{x}{2}\right)=-1.421\) - step1: Find the domain: \(\tan\left(\frac{x}{2}\right)=-1.421,x\neq \pi +2k\pi ,k \in \mathbb{Z}\) - step2: Use the inverse trigonometric function: \(\frac{x}{2}=\arctan\left(-1.421\right)\) - step3: Add the period: \(\frac{x}{2}=\arctan\left(-1.421\right)+k\pi ,k \in \mathbb{Z}\) - step4: Solve the equation: \(x=2\arctan\left(-1.421\right)+2k\pi ,k \in \mathbb{Z}\) - step5: Check if the solution is in the defined range: \(x=2\arctan\left(-1.421\right)+2k\pi ,k \in \mathbb{Z},x\neq \pi +2k\pi ,k \in \mathbb{Z}\) - step6: Find the intersection: \(x=2\arctan\left(-1.421\right)+2k\pi ,k \in \mathbb{Z}\) - step7: Simplify: \(x\approx -1.915143+2k\pi ,k \in \mathbb{Z}\) Solve the equation \( \cos(3x)=-0.123 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\cos\left(3x\right)=-0.123\) - step1: Use the inverse trigonometric function: \(3x=\arccos\left(-0.123\right)\) - step2: Calculate: \(\begin{align}&3x=-\arccos\left(-0.123\right)\\&3x=\arccos\left(-0.123\right)\end{align}\) - step3: Add the period: \(\begin{align}&3x=-\arccos\left(-0.123\right)+2k\pi ,k \in \mathbb{Z}\\&3x=\arccos\left(-0.123\right)+2k\pi ,k \in \mathbb{Z}\end{align}\) - step4: Calculate: \(\begin{align}&x=-\frac{\arccos\left(-0.123\right)}{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\\&3x=\arccos\left(-0.123\right)+2k\pi ,k \in \mathbb{Z}\end{align}\) - step5: Calculate: \(\begin{align}&x=-\frac{\arccos\left(-0.123\right)}{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\\&x=\frac{\arccos\left(-0.123\right)}{3}+\frac{2k\pi }{3},k \in \mathbb{Z}\end{align}\) - step6: Find the union: \(x=\left\{ \begin{array}{l}-\frac{\arccos\left(-0.123\right)}{3}+\frac{2k\pi }{3}\\\frac{\arccos\left(-0.123\right)}{3}+\frac{2k\pi }{3}\end{array}\right.,k \in \mathbb{Z}\) - step7: Simplify: \(x\approx \left\{ \begin{array}{l}-0.564703+\frac{2k\pi }{3}\\0.564703+\frac{2k\pi }{3}\end{array}\right.,k \in \mathbb{Z}\) Solve the equation \( 3\cos(x-15^{\text{°}})+1=-0.456 \). Solve the equation by following steps: - step0: Solve for \(x\): \(3\cos\left(x-15\right)+1=-0.456\) - step1: Move the constant to the right side: \(3\cos\left(x-15\right)=-0.456-1\) - step2: Subtract the numbers: \(3\cos\left(x-15\right)=-1.456\) - step3: Divide both sides: \(\frac{3\cos\left(x-15\right)}{3}=\frac{-1.456}{3}\) - step4: Divide the numbers: \(\cos\left(x-15\right)=-\frac{182}{375}\) - step5: Use the inverse trigonometric function: \(x-15=\arccos\left(-\frac{182}{375}\right)\) - step6: Calculate: \(\begin{align}&x-15=-\arccos\left(-\frac{182}{375}\right)\\&x-15=\arccos\left(-\frac{182}{375}\right)\end{align}\) - step7: Add the period: \(\begin{align}&x-15=-\arccos\left(-\frac{182}{375}\right)+2k\pi ,k \in \mathbb{Z}\\&x-15=\arccos\left(-\frac{182}{375}\right)+2k\pi ,k \in \mathbb{Z}\end{align}\) - step8: Calculate: \(\begin{align}&x=-\arccos\left(-\frac{182}{375}\right)+15+2k\pi ,k \in \mathbb{Z}\\&x-15=\arccos\left(-\frac{182}{375}\right)+2k\pi ,k \in \mathbb{Z}\end{align}\) - step9: Calculate: \(\begin{align}&x=-\arccos\left(-\frac{182}{375}\right)+15+2k\pi ,k \in \mathbb{Z}\\&x=\arccos\left(-\frac{182}{375}\right)+15+2k\pi ,k \in \mathbb{Z}\end{align}\) - step10: Find the union: \(x=\left\{ \begin{array}{l}-\arccos\left(-\frac{182}{375}\right)+15+2k\pi \\\arccos\left(-\frac{182}{375}\right)+15+2k\pi \end{array}\right.,k \in \mathbb{Z}\) Here are the general solutions for the given equations: 1. **Equation:** \( \sin(x - 16^{\circ}) = 0.616 \) **Solution:** \[ x \approx \left\{ \begin{array}{l} -0.330808 + k\pi \\ 0.330808 + k\pi \end{array} \right., k \in \mathbb{Z} \] 2. **Equation:** \( \cos(2x) = 0.789 \) **Solution:** \[ x \approx \left\{ \begin{array}{l} -0.564703 + \frac{2k\pi}{3} \\ 0.564703 + \frac{2k\pi}{3} \end{array} \right., k \in \mathbb{Z} \] 3. **Equation:** \( \cos(3x) = -0.123 \) **Solution:** \[ x \approx \left\{ \begin{array}{l} -0.564703 + \frac{2k\pi}{3} \\ 0.564703 + \frac{2k\pi}{3} \end{array} \right., k \in \mathbb{Z} \] 4. **Equation:** \( \tan(x + 56^{\circ}) = 7.56 \) **Solution:** \[ x \approx -54.560715 + k\pi, k \in \mathbb{Z} \] 5. **Equation:** \( \tan\left(\frac{x}{2}\right) = -1.421 \) **Solution:** \[ x \approx -1.915143 + 2k\pi, k \in \mathbb{Z} \] 6. **Equation:** \( \sin(2x + 44^{\circ}) = -0.708 \) **Solution:** \[ x \approx \left\{ \begin{array}{l} -22.393331 + k\pi \\ -20.035873 + k\pi \end{array} \right., k \in \mathbb{Z} \] 7. **Equation:** \( 3\cos(x - 15^{\circ}) + 1 = -0.456 \) **Solution:** \[ x = \left\{ \begin{array}{l} -\arccos\left(-\frac{182}{375}\right) + 15 + 2k\pi \\ \arccos\left(-\frac{182}{375}\right) + 15 + 2k\pi \end{array} \right., k \in \mathbb{Z} \] 8. **Equation:** \( 2\tan(2x - 10^{\circ}) = 10.67 \) **Solution:** \[ x = \frac{\arctan\left(\frac{1067}{200}\right) + 10}{2} + \frac{k\pi}{2}, k \in \mathbb{Z} \] These solutions provide the general forms for each equation, where \( k \) is any integer.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the general solutions to these equations, let's break them down using fundamental trigonometric identities and the properties of these functions. 1. For \(\sin(x - 16^{\circ}) = 0.616\), we find the reference angle: \( x - 16^{\circ} = \arcsin(0.616) \) or \( x - 16^{\circ} = 180^{\circ} - \arcsin(0.616) \). The general solutions are: \[ x = 16^{\circ} + \arcsin(0.616) + k \cdot 360^{\circ} \quad \text{and} \quad x = 16^{\circ} + (180^{\circ} - \arcsin(0.616)) + k \cdot 360^{\circ} \] 2. For \(\cos(2x) = 0.789\), we find the reference angle: \(2x = \arccos(0.789)\) or \(2x = -\arccos(0.789)\). Hence, the solutions for \(x\) become: \[ x = \frac{\arccos(0.789) + k \cdot 360^{\circ}}{2} \quad \text{and} \quad x = \frac{-\arccos(0.789) + k \cdot 360^{\circ}}{2} \] 3. For \(\cos(3x) = -0.123\), we solve similarly with angles: \[ 3x = \arccos(-0.123) + k \cdot 360^{\circ} \quad \text{or} \quad 3x = -\arccos(-0.123) + k \cdot 360^{\circ} \] Then to find \(x\): \[ x = \frac{\arccos(-0.123) + k \cdot 360^{\circ}}{3} \quad \text{and} \quad x = \frac{-\arccos(-0.123) + k \cdot 360^{\circ}}{3} \] 4. For \(\tan(x + 56^{\circ}) = 7.56\), we find: \[ x + 56^{\circ} = \arctan(7.56) + k \cdot 180^{\circ} \] which gives: \[ x = \arctan(7.56) - 56^{\circ} + k \cdot 180^{\circ} \] 5. For \(\tan\left(\frac{x}{2}\right) = -1.421\): \[ \frac{x}{2} = \arctan(-1.421) + k \cdot 180^{\circ} \] Thus, \[ x = 2\arctan(-1.421) + k \cdot 360^{\circ} \] 6. For \(\sin(2x + 44^{\circ}) = -0.708\), we solve: \[ 2x + 44^{\circ} = \arcsin(-0.708) + k \cdot 360^{\circ} \] Therefore, \[ 2x = \arcsin(-0.708) - 44^{\circ} + k \cdot 360^{\circ} \] 7. The equation \(3 \cos(x - 15^{\circ}) + 1 = -0.456\) simplifies to \(\cos(x - 15^{\circ}) = -0.152\): \[ x - 15^{\circ} = \arccos(-0.152) + k \cdot 360^{\circ} \quad \text{and} \quad x - 15^{\circ} = -\arccos(-0.152) + k \cdot 360^{\circ} \] This leads to: \[ x = \arccos(-0.152) + 15^{\circ} + k \cdot 360^{\circ} \] 8. Last, for \(2 \tan(2x - 10^{\circ}) = 10.67\), we can simplify to: \[ \tan(2x - 10^{\circ}) = 5.335 \] Thus, we get: \[ 2x - 10^{\circ} = \

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad