Pregunta
\( h(t)=-(t-7)^{2}+4 \) 1) What are the zeros of the function? Write the smaller \( t \) first, and the larger \( t \) second. smaller \( t= \) larger \( t= \) 2) What is the vertex of the parabola? a
Ask by Young Rojas. in the United States
Feb 22,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
1) The zeros are t = 5 and t = 9.
2) The vertex of the parabola is at (7, 4).
Solución
1) To find the zeros, set h(t) = 0:
-(t – 7)² + 4 = 0
(t – 7)² = 4
t – 7 = ±2
t = 7 ± 2
So, the zeros are t = 5 and t = 9.
smaller t = 5
larger t = 9
2) The vertex form of the parabola is h(t) = - (t – 7)² + 4, which shows the vertex is at (7, 4).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To find the zeros of the function \( h(t) = -(t-7)^2 + 4 \), set \( h(t) = 0 \): \[ -(t-7)^2 + 4 = 0 \] This leads to: \[ (t-7)^2 = 4 \] Taking the square root gives us: \[ t - 7 = 2 \quad \text{or} \quad t - 7 = -2 \] So, \[ t = 9 \quad \text{and} \quad t = 5 \] Therefore, the smaller \( t \) is: smaller \( t= 5 \) larger \( t= 9 \) Now for the vertex; since it's in the form of \( h(t) = a(t-h)^2 + k \), we see that the vertex form reveals that the vertex, \( (h, k) = (7, 4) \). Hence, the vertex of the parabola is: a \( (7, 4) \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium