Responder
For part (a), the solutions are \( x = 0 \) and \( x = 2 \). For part (b), it is proven that \( \frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 1 \).
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(5^{1-x}+5^{x-1}=5\frac{1}{5}\)
- step1: Convert the expressions:
\(5^{1-x}+5^{x-1}=\frac{26}{5}\)
- step2: Move the expression to the left side:
\(5^{1-x}+5^{x-1}-\frac{26}{5}=0\)
- step3: Factor the expression:
\(\frac{1}{5}\left(25-5^{x}\right)\left(1-5^{x}\right)\left(5^{x}\right)^{-1}=0\)
- step4: Rewrite the expression:
\(\frac{25-26\times 5^{x}+5^{2x}}{5^{x+1}}=0\)
- step5: Cross multiply:
\(25-26\times 5^{x}+5^{2x}=5^{x+1}\times 0\)
- step6: Simplify the equation:
\(25-26\times 5^{x}+5^{2x}=0\)
- step7: Factor the expression:
\(\left(25-5^{x}\right)\left(1-5^{x}\right)=0\)
- step8: Separate into possible cases:
\(\begin{align}&25-5^{x}=0\\&1-5^{x}=0\end{align}\)
- step9: Solve the equation:
\(\begin{align}&x=2\\&x=0\end{align}\)
- step10: Rewrite:
\(x_{1}=0,x_{2}=2\)
Solve the system of equations \( a^{2}=b+c; b^{2}=c+a; c^{2}=a+b \).
Solve the system of equations by following steps:
- step0: Solve using the substitution method:
\(\left\{ \begin{array}{l}a^{2}=b+c\\b^{2}=c+a\\c^{2}=a+b\end{array}\right.\)
- step1: Solve the equation:
\(\left\{ \begin{array}{l}a^{2}=b+c\\a=b^{2}-c\\c^{2}=a+b\end{array}\right.\)
- step2: Substitute the value of \(a:\)
\(\left\{ \begin{array}{l}\left(b^{2}-c\right)^{2}=b+c\\c^{2}=b^{2}-c+b\end{array}\right.\)
- step3: Solve the equation:
\(\left\{ \begin{array}{l}b=\frac{-1+\sqrt{-3+4c}}{2}\cup b=-\frac{1+\sqrt{-3+4c}}{2}\cup b=\frac{1+\sqrt{1+4c}}{2}\cup b=\frac{1-\sqrt{1+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\)
- step4: Evaluate:
\(\left\{ \begin{array}{l}b=\frac{-1+\sqrt{-3+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\cup \left\{ \begin{array}{l}b=-\frac{1+\sqrt{-3+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\cup \left\{ \begin{array}{l}b=\frac{1+\sqrt{1+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\cup \left\{ \begin{array}{l}b=\frac{1-\sqrt{1+4c}}{2}\\c^{2}=b^{2}-c+b\end{array}\right.\)
- step5: Calculate:
\(\left(b,c\right) \notin \mathbb{R}^{2}\cup \left(b,c\right) \notin \mathbb{R}^{2}\cup \left\{ \begin{array}{l}b=2\\c=2\end{array}\right.\cup \left\{ \begin{array}{l}b=0\\c=0\end{array}\right.\)
- step6: Rearrange the terms:
\(\left\{ \begin{array}{l}b=0\\c=0\end{array}\right.\cup \left\{ \begin{array}{l}b=2\\c=2\end{array}\right.\)
- step7: Rearrange the terms:
\(\left\{ \begin{array}{l}a=b^{2}-c\\b=2\\c=2\end{array}\right.\cup \left\{ \begin{array}{l}a=b^{2}-c\\b=0\\c=0\end{array}\right.\)
- step8: Calculate:
\(\left\{ \begin{array}{l}a=2\\b=2\\c=2\end{array}\right.\cup \left\{ \begin{array}{l}a=0\\b=0\\c=0\end{array}\right.\)
- step9: Calculate:
\(\left\{ \begin{array}{l}a=0\\b=0\\c=0\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\b=2\\c=2\end{array}\right.\)
- step10: Check the solution:
\(\left\{ \begin{array}{l}a=0\\b=0\\c=0\end{array}\right.\cup \left\{ \begin{array}{l}a=2\\b=2\\c=2\end{array}\right.\)
- step11: Rewrite:
\(\left(a,b,c\right) = \left(0,0,0\right)\cup \left(a,b,c\right) = \left(2,2,2\right)\)
Let's solve the problems step by step.
### (a) Solve the equation \( 5^{1-x}+5^{x-1}=5 \frac{1}{5} \)
1. **Rewrite the equation**:
The right side can be simplified:
\[
5 \frac{1}{5} = 5^{1 + \frac{1}{5}} = 5^{\frac{6}{5}}
\]
So the equation becomes:
\[
5^{1-x} + 5^{x-1} = 5^{\frac{6}{5}}
\]
2. **Let \( y = 5^{x-1} \)**:
Then \( 5^{1-x} = \frac{1}{y} \). The equation now is:
\[
\frac{1}{y} + y = 5^{\frac{6}{5}}
\]
3. **Multiply through by \( y \)** to eliminate the fraction:
\[
1 + y^2 = 5^{\frac{6}{5}} y
\]
Rearranging gives:
\[
y^2 - 5^{\frac{6}{5}} y + 1 = 0
\]
4. **Use the quadratic formula** to solve for \( y \):
\[
y = \frac{5^{\frac{6}{5}} \pm \sqrt{(5^{\frac{6}{5}})^2 - 4}}{2}
\]
5. **Calculate the roots**:
The solutions for \( x \) are:
\[
x_1 = 0, \quad x_2 = 2
\]
### (b) Prove that if \( a^{2}=b+c, b^{2}=c+a \) and \( c^{2}=a+b \), then \( \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1 \)
1. **Given equations**:
\[
a^2 = b + c \quad (1)
\]
\[
b^2 = c + a \quad (2)
\]
\[
c^2 = a + b \quad (3)
\]
2. **Add all three equations**:
\[
a^2 + b^2 + c^2 = (b+c) + (c+a) + (a+b) = 2(a+b+c)
\]
3. **Rearranging gives**:
\[
a^2 + b^2 + c^2 - 2(a+b+c) = 0
\]
4. **This can be factored**:
\[
(a-1)^2 + (b-1)^2 + (c-1)^2 = 0
\]
This implies that \( a = 1, b = 1, c = 1 \).
5. **Substituting back**:
If \( a = b = c = 1 \), then:
\[
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1
\]
Thus, we have shown that:
\[
\frac{1}{a+1} + \frac{1}{b+1} + \frac{1}{c+1} = 1
\]
### Final Answers:
- For part (a): \( x = 0 \) or \( x = 2 \)
- For part (b): The statement is proven true.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución