Realiza la siguiente división algebraica \( \left(6 x^{2}+13 x+5\right) \div(2 x+1) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
Para realizar la división algebraica \( \left(6 x^{2}+13 x+5\right) \div(2 x+1) \), primero podemos usar la división sintética o larga. Al aplicar la división larga, primero dividimos el término de mayor grado: 1. Dividimos \(6x^2\) entre \(2x\), lo que nos da \(3x\). 2. Multiplicamos \(3x\) por \(2x + 1\) para obtener \(6x^2 + 3x\). 3. Restamos \( (6x^2 + 3x) \) de \( (6x^2 + 13x + 5) \), quedando \(10x + 5\). 4. Repetimos el proceso: dividimos \(10x\) entre \(2x\), obteniendo \(5\). 5. Multiplicamos \(5\) por \(2x + 1\), resultando \(10x + 5\). 6. Restamos, y al final obtenemos el residuo \(0\). Así que \( \left(6 x^{2}+13 x+5\right) \div(2 x+1) = 3x + 5 \) sin residuo.
