Pregunta
upstudy study bank question image url

Use synthetic division to divide. \[ \frac{7 x^{3}+24 x^{2}+6 x-9}{x+3} \]

Ask by Cole Lane. in the United States
Feb 22,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quotient is \( 7x^{2} + 3x - 3 \).

Solución

To use synthetic division to divide 7x³ + 24x² + 6x - 9 by x + 3, follow these steps: Step 1. Rewrite the divisor in the form x - a. Since the divisor is x + 3, we have a = -3. Step 2. Write the coefficients of the dividend: 7, 24, 6, and -9. Step 3. Set up the synthetic division: -3 | 7 24 6 -9 | ? ? ? ----------------------- ? ? ? ? Step 4. Bring down the first coefficient (7): -3 | 7 24 6 -9 | ----------------------- 7 Step 5. Multiply 7 by -3: 7 × (-3) = -21, and write this under the next coefficient: -3 | 7 24 6 -9 | -21 ----------------------- 7 Step 6. Add the column: 24 + (-21) = 3, and write it below: -3 | 7 24 6 -9 | -21 ----------------------- 7 3 Step 7. Multiply the new value (3) by -3: 3 × (-3) = -9, and place it under the next coefficient: -3 | 7 24 6 -9 | -21 -9 ----------------------- 7 3 Step 8. Add the column: 6 + (-9) = -3, and write it below: -3 | 7 24 6 -9 | -21 -9 ----------------------- 7 3 -3 Step 9. Multiply -3 by -3: (-3) × (-3) = 9, and write it under the last coefficient: -3 | 7 24 6 -9 | -21 -9 9 ----------------------- 7 3 -3 Step 10. Add the column: -9 + 9 = 0, which is the remainder: -3 | 7 24 6 -9 | -21 -9 9 ----------------------- 7 3 -3 0 The bottom row (except for the remainder) gives the coefficients of the quotient polynomial. Since we started with a cubic polynomial, the quotient is a quadratic polynomial: 7x² + 3x - 3. Therefore, the division is: 7x³ + 24x² + 6x - 9 = (x + 3)(7x² + 3x - 3) + 0 Since the remainder is 0, the division is exact. Final Answer: The quotient is 7x² + 3x - 3.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To perform synthetic division of \( 7x^3 + 24x^2 + 6x - 9 \) by \( x + 3 \), we first set \( x + 3 = 0 \) to find the value we will use in synthetic division, which gives us \( x = -3 \). Now, we organize the coefficients of the polynomial: \( 7, 24, 6, -9 \). Here’s how we do synthetic division: 1. Write down the coefficients: \( 7, 24, 6, -9 \) 2. Write \( -3 \) to the left: \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ \end{array} \] 3. Bring down the first coefficient (7): \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ & & & & \\ & 7 & & & \\ \end{array} \] 4. Multiply \( 7 \) by \( -3 \) and place it under the next coefficient (24): \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ & & -21 & & \\ & 7 & & & \\ \end{array} \] 5. Add \( 24 + (-21) = 3 \): \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ & & -21 & -9 & \\ & 7 & 3 & & \\ \end{array} \] 6. Multiply \( 3 \) by \( -3 \) and place it under the next coefficient (6): \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ & & -21 & -9 & \\ & 7 & 3 & & \\ \end{array} + \begin{array}{r|rrrr} & & & -9 & \\ \end{array} \] 7. Add \( 6 + (-9) = -3 \): \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ & & -21 & -9 & \\ & 7 & 3 & -3 & \\ \end{array} \] 8. Multiply \( -3 \) by \( -3 \) and place it under the last coefficient (-9): \[ \begin{array}{r|rrrr} -3 & 7 & 24 & 6 & -9 \\ & & -21 & -9 & 9 \\ & 7 & 3 & -3 & \\ \end{array} \] 9. Add \( -9 + 9 = 0 \). Now, we write the result from top to bottom. The new polynomial is: \[ 7x^2 + 3x - 3 \] with a remainder of 0. Thus, the final result of the synthetic division is: \[ \frac{7x^3 + 24x^2 + 6x - 9}{x + 3} = 7x^2 + 3x - 3 \]

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad