Pregunta
upstudy study bank question image url

A deck of cards contains 12 cards with letters and 16 cards with numbers. A card is pulled from the at random and replaced. This process is carried out 14 times. What is a reasonable prediction for the numbeli of times a card with a letter should be chosen? *Must show work*

Ask by Maxwell Lindsey. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

A reasonable prediction is that a letter card will be chosen 6 times out of 14 attempts.

Solución

To solve this problem, we need to determine the probability of drawing a card with a letter and then use that probability to predict how many times a letter card will be drawn in 14 attempts. ### Step 1: Determine the total number of cards The total number of cards in the deck is the sum of the letter cards and the number cards: \[ \text{Total cards} = \text{Number of letter cards} + \text{Number of number cards} = 12 + 16 = 28 \] ### Step 2: Calculate the probability of drawing a letter card The probability \( P(L) \) of drawing a letter card is given by the ratio of the number of letter cards to the total number of cards: \[ P(L) = \frac{\text{Number of letter cards}}{\text{Total cards}} = \frac{12}{28} \] ### Step 3: Simplify the probability We can simplify \( \frac{12}{28} \): \[ P(L) = \frac{12 \div 4}{28 \div 4} = \frac{3}{7} \] ### Step 4: Predict the number of times a letter card will be drawn To predict the number of times a letter card will be drawn in 14 attempts, we multiply the total number of attempts by the probability of drawing a letter card: \[ \text{Expected number of letter cards} = 14 \times P(L) = 14 \times \frac{3}{7} \] ### Step 5: Calculate the expected number Now we perform the multiplication: \[ \text{Expected number of letter cards} = 14 \times \frac{3}{7} = 14 \div 7 \times 3 = 2 \times 3 = 6 \] ### Conclusion A reasonable prediction for the number of times a card with a letter should be chosen in 14 attempts is \( \boxed{6} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To predict how many times a card with a letter should be chosen in 14 draws, we first need to find the probability of drawing a letter card. 1. **Total number of cards**: 12 (letters) + 16 (numbers) = 28 cards. 2. **Probability of drawing a letter card**: 12 letters / 28 total cards = 12/28 = 3/7 ≈ 0.4286. 3. **Expected number of letter cards in 14 draws**: Multiply the probability of drawing a letter card by the total number of draws: (3/7) * 14 ≈ 6. So, a reasonable prediction for the number of times a card with a letter should be chosen is approximately **6 times**. Now, let’s spice it up a bit! Pulling cards from this mixed deck isn’t just a fun way to gamble, it’s also a nifty introduction to probability. Just think about it: every time you reach for a card, you’re like a mini scientist, experimenting with outcomes! Dive into some card games or probability puzzles to keep that math muscle flexing—who knew probability could be so entertaining? Also, did you know that probability concepts like this ripple into all sorts of real-world scenarios? Whether it’s predicting weather events, managing risks in finance, or even in sports analytics predicting player performance, mastering the art of probability gives you an edge. So grab your cards and keep drawing!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad