Pregunta
upstudy study bank question image url

A stone is thrown with an initial velocity of \( 35 \mathrm{ft} / \mathrm{s} \) from the edge of a bridge that is 42 ft above the ground. The height of this stone above the ground t seconds after it s thrown is \( f(t)=-16 \mathrm{t}^{2}+35 t+42 \). If a second stone is thrown from the ground, then its height above the ground after \( t \) seconds is given by \( g(t)=-16 \mathrm{t}^{2}+\mathrm{v}_{0} \mathrm{t} \), where \( v_{0} \) is the initial velocity of the second stone. Determine the value of \( \mathrm{v}_{0} \) such that the two stones reach the same maximum height. When an object that is thrown upwards reaches its highest point (just before it starts to fall back to the ground), its velocity will be zero. Therefore, to find the maximum height of the object thrown from the bridge, use the velocity equation, \( v=\frac{\mathrm{ds}}{\mathrm{dt}}=f^{\prime}(t) \). The initial velocity of the second stone would need to be \( \mathrm{v}_{0}=\square \) (Do not round until the final answer. Then round to one decimal place.)

Ask by Vargas Logan. in the United States
Mar 12,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The initial velocity \( v_0 \) of the second stone should be approximately 62.6 ft/s to reach the same maximum height as the first stone.

Solución

We start by finding the maximum height reached by the stone thrown from the bridge. Its height is given by \[ f(t) = -16t^2 + 35t + 42. \] 1. The velocity is the derivative of \( f(t) \): \[ f'(t) = -32t + 35. \] Setting \( f'(t) = 0 \) gives the time at maximum height: \[ -32t + 35 = 0 \quad \Longrightarrow \quad t = \frac{35}{32}. \] 2. Plug \( t = \frac{35}{32} \) into \( f(t) \) to find the maximum height: \[ f\left(\frac{35}{32}\right) = -16\left(\frac{35}{32}\right)^2 + 35\left(\frac{35}{32}\right) + 42. \] First, compute \(\left(\frac{35}{32}\right)^2\): \[ \left(\frac{35}{32}\right)^2 = \frac{1225}{1024}. \] Then substitute into the equation: \[ f\left(\frac{35}{32}\right) = -16 \cdot \frac{1225}{1024} + \frac{1225}{32} + 42. \] Simplify the first term: \[ -16 \cdot \frac{1225}{1024} = -\frac{1225}{64}. \] Now express the second term with denominator 64: \[ \frac{1225}{32} = \frac{2450}{64}. \] Thus, we have \[ f\left(\frac{35}{32}\right) = -\frac{1225}{64} + \frac{2450}{64} + 42 = \frac{1225}{64} + 42. \] Express 42 with denominator 64: \[ 42 = \frac{2688}{64}. \] Now, add the fractions: \[ f\left(\frac{35}{32}\right) = \frac{1225 + 2688}{64} = \frac{3913}{64}. \] 3. For the second stone thrown from the ground, its height is given by \[ g(t) = -16t^2 + v_0 t. \] The maximum height for this stone is reached when \( g'(t) = 0 \). Compute the derivative: \[ g'(t) = -32t + v_0. \] Set \( g'(t)=0 \): \[ -32t + v_0 = 0 \quad \Longrightarrow \quad t = \frac{v_0}{32}. \] Then, the maximum height is \[ g\left(\frac{v_0}{32}\right) = -16\left(\frac{v_0}{32}\right)^2 + v_0\left(\frac{v_0}{32}\right). \] Calculate \(\left(\frac{v_0}{32}\right)^2 = \frac{v_0^2}{1024}\). Then, \[ -16\left(\frac{v_0^2}{1024}\right) = -\frac{16v_0^2}{1024} = -\frac{v_0^2}{64}, \] \[ v_0\left(\frac{v_0}{32}\right) = \frac{v_0^2}{32}. \] Thus, \[ g\left(\frac{v_0}{32}\right) = -\frac{v_0^2}{64} + \frac{v_0^2}{32}. \] Write \(\frac{v_0^2}{32}\) as \(\frac{2v_0^2}{64}\): \[ g\left(\frac{v_0}{32}\right) = \frac{-v_0^2 + 2v_0^2}{64} = \frac{v_0^2}{64}. \] 4. To have the same maximum height, set the two heights equal: \[ \frac{v_0^2}{64} = \frac{3913}{64}. \] Multiply both sides by 64: \[ v_0^2 = 3913. \] Taking the positive square root: \[ v_0 = \sqrt{3913}. \] Calculating the numerical value: \[ v_0 \approx 62.6 \, \text{ft/s}. \] Thus, the initial velocity of the second stone must be \( \boxed{62.6} \, \text{ft/s} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the maximum height of the stone thrown from the bridge, we need to first determine when the velocity \( v = 0 \). The velocity function is given by \( f'(t) = -32t + 35 \). Setting this to zero gives us \( t = \frac{35}{32} \) seconds. We can now use this time to find the maximum height \( f\left(\frac{35}{32}\right) \): \[ f\left(\frac{35}{32}\right) = -16\left(\frac{35}{32}\right)^2 + 35\left(\frac{35}{32}\right) + 42. \] Solving this, we find that the maximum height is \( \frac{2009}{64} \) feet or approximately 31.4 feet. Now, for the second stone, we set its maximum height equal to this value to find \( v_0 \): 1. Find \( g(t) = -16t^2 + v_0t \). 2. The vertex form is \( t = \frac{v_0}{32} \), and substituting this back in gives us \( g\left(\frac{v_0}{32}\right) = -16\left(\frac{v_0}{32}\right)^2 + v_0\left(\frac{v_0}{32}\right) \). Setting this equal to the maximum height from the first stone, we can solve for \( v_0 \). After isolating and calculating, we find \( v_0 \) needs to equal \( \approx 62.8 \) ft/s to match the maximum height. So, the initial velocity of the second stone would need to be \( v_0 = 62.8 \) ft/s.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad