Pregunta
upstudy study bank question image url

Let \( f(x)=(x+1)^{2} \) Find a domain on which \( f \) is one-to-one and non-decreasing. Find the inverse of \( f \) restricted to this domain \( f^{-1}(x)=\square \)

Ask by O'Quinn Norris. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To ensure \( f(x) = (x + 1)^2 \) is one-to-one and non-decreasing, restrict the domain to \( x \geq -1 \). The inverse function is \( f^{-1}(x) = \sqrt{x} - 1 \).

Solución

To find a domain on which the function \( f(x) = (x + 1)^2 \) is one-to-one and non-decreasing, we need to analyze the function's behavior. 1. **Determine the nature of the function:** - The function \( f(x) = (x + 1)^2 \) is a quadratic function that opens upwards. It has a vertex at \( x = -1 \), which is the minimum point. 2. **Identify intervals for one-to-one and non-decreasing behavior:** - A function is one-to-one if it is either strictly increasing or strictly decreasing. Since \( f(x) \) is a parabola opening upwards, it is decreasing on the interval \( (-\infty, -1] \) and increasing on the interval \( [-1, \infty) \). - To ensure that \( f \) is non-decreasing and one-to-one, we can restrict the domain to \( [-1, \infty) \). 3. **Find the inverse of \( f \) on the restricted domain:** - To find the inverse, we start by setting \( y = f(x) \): \[ y = (x + 1)^2 \] - Next, we solve for \( x \): \[ \sqrt{y} = x + 1 \quad \text{(taking the positive root since we are in the interval } [-1, \infty)) \] \[ x = \sqrt{y} - 1 \] - Thus, the inverse function is: \[ f^{-1}(x) = \sqrt{x} - 1 \] Now, we can summarize the results: - The domain on which \( f \) is one-to-one and non-decreasing is \( [-1, \infty) \). - The inverse of \( f \) restricted to this domain is: \[ f^{-1}(x) = \sqrt{x} - 1 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To make \( f(x) = (x + 1)^2 \) one-to-one and non-decreasing, we can restrict the domain to \( x \geq -1 \). This is because the function is a parabola that opens upwards and achieves its minimum at \( x = -1 \). In this domain, \( f \) is both one-to-one and non-decreasing. Now, to find the inverse of \( f \) restricted to this domain, we set \( y = f(x) \): \[ y = (x + 1)^2 \] Next, we solve for \( x \): \[ \sqrt{y} = x + 1 \] \[ x = \sqrt{y} - 1 \] Thus, the inverse function is: \[ f^{-1}(x) = \sqrt{x} - 1 \] So, fill in the box: \( f^{-1}(x) = \sqrt{x} - 1 \)

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad