Pregunta
upstudy study bank question image url

describes how many people are remaining in the tournament after \( x \) rounds. How many people are left in the toumament after 2 rounds? \( x=2 \) \( y=16\left(\frac{1}{2}\right)^{x} \) INVESTMENTS Determine the amount of an investment if \( \$ 1000 \) is invested at an interest rate of \( 8 \% \) compo quarterly for 2 years.

Ask by Wyatt Cole. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 2 rounds in the tournament, there are 4 players remaining. The $1000 investment grows to approximately $1171.66 after 2 years.

Solución

We are given two separate problems: 1. Tournament Remaining Players: The formula is y = 16 · (1/2)^x. For x = 2 rounds: • y = 16 · (1/2)^2 = 16 · (1/4) = 4. So, there are 4 people left in the tournament after 2 rounds. 2. Investment Calculation: The investment formula for compound interest is: A = P · (1 + r/n)^(n·t) where: • P = $1000 (initial investment) • r = 8% per year = 0.08 • n = 4 (compounded quarterly) • t = 2 years Substitute the values: A = 1000 · (1 + 0.08/4)^(4·2) = 1000 · (1 + 0.02)^8 = 1000 · (1.02)^8 Now, calculate (1.02)^8. Using a calculator, we find: (1.02)^8 ≈ 1.17166 Therefore: A ≈ 1000 · 1.17166 ≈ $1171.66 Summary: • After 2 rounds in the tournament, 4 players remain. • The $1000 investment grows to approximately $1171.66 after 2 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

After 2 rounds of the tournament, we can substitute \( x = 2 \) into the equation \( y = 16\left(\frac{1}{2}\right)^{x} \). This gives us \( y = 16\left(\frac{1}{2}\right)^{2} = 16 \cdot \frac{1}{4} = 4 \). So, there are 4 people remaining in the tournament after 2 rounds! For the investment, using the formula for compound interest \( A = P\left(1 + \frac{r}{n}\right)^{nt} \), where \( P = 1000 \), \( r = 0.08 \), \( n = 4 \) (quarterly), and \( t = 2 \): \( A = 1000\left(1 + \frac{0.08}{4}\right)^{4 \cdot 2} = 1000\left(1 + 0.02\right)^{8} = 1000\left(1.02\right)^{8} \approx 1000 \cdot 1.1717 = 1171.70 \). Your investment will grow to approximately \$1171.70 after 2 years!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad