Pregunta
upstudy study bank question image url

A cone has a volume of 300 units \( ^{3} \), and a cylinder as a volume of 100 units \( ^{3} \). Is it possil that the cylinder and cone have the same height and the same radius?

Ask by Christensen Reed. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

It is not possible for the cylinder and cone to have the same height and the same radius with the given volumes.

Solución

To determine if it is possible for the cylinder and cone to have the same height and the same radius, we need to consider the formulas for the volume of a cone and a cylinder. The volume of a cone is given by the formula: \[ V_{cone} = \frac{1}{3} \pi r^2 h \] The volume of a cylinder is given by the formula: \[ V_{cylinder} = \pi r^2 h \] Given that the volume of the cone is 300 units \( ^{3} \) and the volume of the cylinder is 100 units \( ^{3} \), we can set up the following equations: \[ \frac{1}{3} \pi r^2 h = 300 \] \[ \pi r^2 h = 100 \] We can solve these equations to find the relationship between the radius and height of the cone and cylinder. Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}\frac{1}{3}\pi r^{2}h=300\\\pi r^{2}h=100\end{array}\right.\) - step1: Calculate: \(\left\{ \begin{array}{l}\frac{\pi }{3}r^{2}h=300\\\pi r^{2}h=100\end{array}\right.\) - step2: Solve the equation: \(\left\{ \begin{array}{l}h=\frac{900}{\pi r^{2}}\\\pi r^{2}h=100\end{array}\right.\) - step3: Substitute the value of \(h:\) \(\pi r^{2}\times \frac{900}{\pi r^{2}}=100\) - step4: Simplify: \(900=100\) - step5: Calculate: \(\left\{ \begin{array}{l}h \in \varnothing \\r \in \varnothing \end{array}\right.\) - step6: Rewrite: \((h, r) \in \varnothing\) The system of equations does not have any solution, which means it is not possible for the cylinder and cone to have the same height and the same radius.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine if the cylinder and cone can have the same height and radius given their volumes, we can use the formulas for their volumes. The volume of a cylinder is calculated as \( V_{\text{cylinder}} = \pi r^2 h \), while the volume of a cone is \( V_{\text{cone}} = \frac{1}{3} \pi r^2 h \). If both have the same radius \( r \) and height \( h \), we can set the equations: 1. \( \frac{1}{3} \pi r^2 h = 300 \) 2. \( \pi r^2 h = 100 \) From the second equation, we can multiply it by 3 to draw a comparison. This quickly shows that the ratios of their volumes indicate they cannot have the same dimensions, as the cone's volume is 3 times that of a cylinder with the same base and height. In summary, it is not possible for the cylinder and cone to have the same height and radius while maintaining those volumes.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad