Responder
After simplifying, the results are:
1. **Problem 2:**
\[
\frac{-2x^3 + x^2 + 16x - 3}{-(x-3)(3+x)}
\]
2. **Problem 4:**
\[
\frac{-x^2 - 2x + 2}{(x-4)(x+1)}
\]
Solución
Let's solve each of the given expressions step by step.
### Problem 2:
\[
\frac{2 x}{x-3}+\frac{x+1}{9-x^{2}}
\]
**Step 1: Factor the denominator of the second term.**
The expression \(9 - x^2\) can be factored as:
\[
9 - x^2 = (3 - x)(3 + x)
\]
**Step 2: Rewrite the expression.**
Now we can rewrite the expression as:
\[
\frac{2x}{x-3} + \frac{x+1}{(3-x)(3+x)}
\]
**Step 3: Find a common denominator.**
The common denominator will be \((x-3)(3-x)(3+x)\). Notice that \(3-x = -(x-3)\), so we can rewrite the common denominator as:
\[
-(x-3)^2(3+x)
\]
**Step 4: Rewrite each fraction with the common denominator.**
The first term becomes:
\[
\frac{2x(3-x)(3+x)}{-(x-3)^2(3+x)}
\]
The second term becomes:
\[
\frac{(x+1)(x-3)}{-(x-3)(3+x)}
\]
**Step 5: Combine the fractions.**
Now we can combine the fractions:
\[
\frac{2x(3-x)(3+x) + (x+1)(x-3)}{-(x-3)(3+x)}
\]
**Step 6: Simplify the numerator.**
Let's simplify the numerator:
\[
2x(3-x)(3+x) + (x+1)(x-3)
\]
Now, let's calculate this expression.
### Problem 3:
\[
\frac{\frac{x-2}{4 x^{2}+2 x+1}-\frac{8 x+1}{8 x^{2}+1}}{\frac{x}{4-x}-\frac{2 x-24}{x^{2}-42}}
\]
**Step 1: Factor the denominators.**
The first denominator \(4x^2 + 2x + 1\) can be factored as:
\[
(2x + 1)^2
\]
The second denominator \(8x^2 + 1\) cannot be factored further.
The second part of the expression has:
\[
x^2 - 42 = (x - \sqrt{42})(x + \sqrt{42})
\]
**Step 2: Rewrite the expression.**
Now we can rewrite the expression as:
\[
\frac{\frac{x-2}{(2x+1)^2} - \frac{8x+1}{8x^2 + 1}}{\frac{x}{4-x} - \frac{2x-24}{(x - \sqrt{42})(x + \sqrt{42})}}
\]
**Step 3: Find a common denominator for the numerator and denominator.**
For the numerator, the common denominator is \((2x + 1)^2(8x^2 + 1)\).
For the denominator, the common denominator is \((4-x)(x - \sqrt{42})(x + \sqrt{42})\).
**Step 4: Combine the fractions.**
Now we can combine the fractions in both the numerator and denominator.
### Problem 4:
\[
\frac{3}{x^{2}-3 x-4}-\frac{x+1}{4-x}
\]
**Step 1: Factor the first denominator.**
The expression \(x^2 - 3x - 4\) can be factored as:
\[
(x - 4)(x + 1)
\]
**Step 2: Rewrite the expression.**
Now we can rewrite the expression as:
\[
\frac{3}{(x-4)(x+1)} - \frac{x+1}{4-x}
\]
**Step 3: Rewrite the second term.**
Notice that \(4 - x = -(x - 4)\), so we can rewrite the second term as:
\[
-\frac{x+1}{-(x-4)} = \frac{x+1}{x-4}
\]
**Step 4: Find a common denominator.**
The common denominator will be \((x-4)(x+1)\).
**Step 5: Combine the fractions.**
Now we can combine the fractions:
\[
\frac{3 - (x+1)(x+1)}{(x-4)(x+1)}
\]
Now, let's perform the calculations for the first two problems and simplify them.
### Calculating Problem 2 and Problem 4
Let's calculate the expressions for Problem 2 and Problem 4.
I'll proceed with the calculations for both problems.
Simplify the expression by following steps:
- step0: Solution:
\(3-\left(x+1\right)\left(x+1\right)\)
- step1: Multiply the terms:
\(3-\left(-x-1\right)^{2}\)
- step2: Expand the expression:
\(3-x^{2}-2x-1\)
- step3: Subtract the numbers:
\(2-x^{2}-2x\)
Calculate or simplify the expression \( 2*x*(3-x)*(3+x) + (x+1)*(x-3) \).
Simplify the expression by following steps:
- step0: Solution:
\(2x\left(3-x\right)\left(3+x\right)+\left(x+1\right)\left(x-3\right)\)
- step1: Expand the expression:
\(18x-2x^{3}+\left(x+1\right)\left(x-3\right)\)
- step2: Expand the expression:
\(18x-2x^{3}+x^{2}-2x-3\)
- step3: Subtract the terms:
\(16x-2x^{3}+x^{2}-3\)
### Problem 2 Result:
After simplifying the numerator for Problem 2, we have:
\[
2x(3-x)(3+x) + (x+1)(x-3) = -2x^3 + x^2 + 16x - 3
\]
Thus, the expression for Problem 2 can be rewritten as:
\[
\frac{-2x^3 + x^2 + 16x - 3}{-(x-3)(3+x)}
\]
### Problem 4 Result:
After simplifying the numerator for Problem 4, we have:
\[
3 - (x+1)(x+1) = -x^2 - 2x + 2
\]
Thus, the expression for Problem 4 can be rewritten as:
\[
\frac{-x^2 - 2x + 2}{(x-4)(x+1)}
\]
### Summary of Results:
1. **Problem 2:**
\[
\frac{-2x^3 + x^2 + 16x - 3}{-(x-3)(3+x)}
\]
2. **Problem 4:**
\[
\frac{-x^2 - 2x + 2}{(x-4)(x+1)}
\]
If you need further simplifications or calculations for Problem 3, please let me know!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución