Pregunta
Change the logarithmic expression to an equivalent expression involving an exponent \( \log _{5}\left(\frac{1}{125}\right)=-3 \) The logarithm \( \log _{5}\left(\frac{1}{125}\right)=-3 \) written as an exponential equation is \( 5^{-3} \) (Type an equation. Use integers or fractions for any numbers in the equation.)
Ask by Powers Kelley. in the United States
Feb 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( 5^{-3} = \frac{1}{125} \)
Solución
5^(-3) = 1/125
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
\( 5^{-3} = \frac{1}{125} \) This shows that raising 5 to the power of -3 gives you \(\frac{1}{125}\), confirming that your logarithmic expression was indeed correctly transformed into an exponent!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium