Apply Descartes' Rule of Signs. Determine the number of possible positive and negative real zeros for the given function. \[ p(x)=5 x^{6}-7 x^{5}+7 x^{4}+4 x^{3}+6 x^{2}+8 x+2 \] Each part may have more than one possibility. Use commas to separate multiple responses. Part 1 of 2 Number of possible positive real zeros: Part 2 of 2
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To determine the number of possible positive real zeros using Descartes' Rule of Signs, we look at the sign changes of \( p(x) \). The function is \( p(x) = 5x^6 - 7x^5 + 7x^4 + 4x^3 + 6x^2 + 8x + 2 \). Analyzing the signs, we have: - \( 5 \) (positive) - \( -7 \) (negative) - \( +7 \) (positive) - \( +4 \) (positive) - \( +6 \) (positive) - \( +8 \) (positive) - \( +2 \) (positive) There is 1 sign change (from \( 5 \) to \( -7 \)). Therefore, according to Descartes' Rule, there is exactly **1 possible positive real zero**. Now for the negative real zeros, we analyze \( p(-x) \): \[ p(-x) = 5(-x)^6 - 7(-x)^5 + 7(-x)^4 + 4(-x)^3 + 6(-x)^2 + 8(-x) + 2 \] This simplifies to: \[ p(-x) = 5x^6 + 7x^5 + 7x^4 - 4x^3 + 6x^2 - 8x + 2 \] The signs are 5 (positive), 7 (positive), 7 (positive), -4 (negative), 6 (positive), -8 (negative), and 2 (positive). We observe: - From \( +5 \) to \( +7 \): no change - From \( +7 \) to \( -4 \): 1 change - From \( -4 \) to \( +6 \): 1 change - From \( +6 \) to \( -8 \): 1 change - From \( -8 \) to \( +2 \): 1 change Totaling 4 sign changes, we conclude there are **4 or 2 or 0 negative real zeros**. So, summarizing: Part 1: **1** Part 2: **4, 2, 0**
