Pregunta
upstudy study bank question image url

Question Graph the function \( f(x)=\left(\frac{1}{4}\right)^{x} \) by moving the key points. You can only graph integer points, for example you cannot plot the point \( \left(-1, \frac{1}{4}\right) \).

Ask by Salazar Parry. in the United States
Feb 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph \( f(x) = \left(\frac{1}{4}\right)^x \), plot the key integer points: - (–2, 16) - (–1, 4) - (0, 1) Then, draw a smooth curve through these points, ensuring it approaches the x-axis as x increases and rises steeply as x decreases.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Extra Insights

To graph the function \( f(x)=\left(\frac{1}{4}\right)^{x} \) using integer points, start by calculating key values at integer x-values. For \( x = 0 \), \( f(0) = \left(\frac{1}{4}\right)^{0} = 1 \) gives you the point \( (0, 1) \). For \( x = 1 \), \( f(1) = \frac{1}{4} \) yields \( (1, 0.25) \), but since you can only plot integer points, you'll skip this. Next, for \( x = 2 \), \( f(2) = \left(\frac{1}{4}\right)^{2} = \frac{1}{16} \), which also doesn’t count. However, for negative values: at \( x = -1 \), \( f(-1) = \left(\frac{1}{4}\right)^{-1} = 4 \), so plot \( (-1, 4) \). And at \( x = -2 \), \( f(-2) = 16 \), plot \( (-2, 16) \). Connect the points for a smooth curve showing the exponential decay. To gain a deeper understanding of this function, it's interesting to note that this type of function represents exponential decay, which is seen in real-world scenarios like radioactive decay and depreciation of assets. Identifying where this function is used can help in grasping the concept better. For instance, when a substance decays, it loses half its quantity at successive intervals—mirroring the behavior of this graph as the values shrink towards zero as x increases.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad