Pregunta
upstudy study bank question image url

ASSIGNMENT \#5 1) If \( \cos \theta=\frac{\sqrt{3}}{2} \), find all values of \( \theta \) where \( 0 \leq \theta \leq 360^{\circ} \). Draw a diagram to support your answer.

Ask by Hills Graham. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The angles \( \theta \) where \( \cos \theta = \frac{\sqrt{3}}{2} \) between \( 0^{\circ} \) and \( 360^{\circ} \) are \( 30^{\circ} \) and \( 330^{\circ} \).

Solución

To solve the problem, we need to find all angles \( \theta \) in the range \( 0 \leq \theta \leq 360^{\circ} \) for which \( \cos \theta = \frac{\sqrt{3}}{2} \). ### Step 1: Identify the reference angle The cosine function is positive in the first and fourth quadrants. The reference angle \( \theta_r \) for which \( \cos \theta = \frac{\sqrt{3}}{2} \) is: \[ \theta_r = 30^{\circ} \] ### Step 2: Find all angles in the specified range 1. **First Quadrant**: The angle is simply the reference angle: \[ \theta_1 = 30^{\circ} \] 2. **Fourth Quadrant**: The angle can be found by subtracting the reference angle from \( 360^{\circ} \): \[ \theta_2 = 360^{\circ} - 30^{\circ} = 330^{\circ} \] ### Step 3: List all solutions Thus, the solutions for \( \theta \) in the range \( 0 \leq \theta \leq 360^{\circ} \) are: \[ \theta = 30^{\circ}, 330^{\circ} \] ### Step 4: Draw a diagram To support the answer, we can visualize the unit circle where the angles are located: - The angle \( 30^{\circ} \) is in the first quadrant. - The angle \( 330^{\circ} \) is in the fourth quadrant. Now, I will create a diagram to illustrate this. ### Diagram The unit circle will show the angles \( 30^{\circ} \) and \( 330^{\circ} \) with their corresponding cosine values. Let's proceed to create the diagram. (Note: As a text-based AI, I cannot draw diagrams directly, but I can describe how to draw it.) 1. Draw a circle with a radius of 1. 2. Mark the angle \( 30^{\circ} \) from the positive x-axis, which will be in the first quadrant. 3. Mark the angle \( 330^{\circ} \) from the positive x-axis, which will be in the fourth quadrant. 4. Draw the horizontal line from the center to the right (positive x-axis) and the vertical line from the center to the top (positive y-axis). 5. Label the points where the angles intersect the circle. ### Conclusion The values of \( \theta \) where \( \cos \theta = \frac{\sqrt{3}}{2} \) in the range \( 0 \leq \theta \leq 360^{\circ} \) are \( 30^{\circ} \) and \( 330^{\circ} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

If \( \cos \theta = \frac{\sqrt{3}}{2} \), we know this value occurs at specific angles on the unit circle. The angles that correspond to this value are \( \theta = 30^\circ \) and \( \theta = 330^\circ \) because cosine is positive in both the first and fourth quadrants. To visualize this, you can sketch a unit circle and mark these angles: 30 degrees in the first quadrant and 330 degrees in the fourth quadrant. For a complete solution, you would look for the x-coordinate of points on the circle since cosine represents the horizontal distance from the origin to the circle. So, you can confidently state the solutions for \( \theta \) as \( 30^\circ \) and \( 330^\circ \).

preguntas relacionadas

8. Simplify without using a calculator. (8.1) \( \frac{\sin \left(180^{\circ}-x\right) \cdot \tan \left(360^{\circ}-x\right)}{\cos \left(80^{\circ}-x\right)} \times \frac{\cos \left(-180^{\circ}-x\right)}{\cos \left(360^{\circ}+x\right) \sin \left(360^{\circ}-x\right)} \) \( 8.2 \frac{\cos 135^{\circ} \sin 160^{\circ}}{\sin 225^{\circ} \cos 70^{\circ}} \) (8.3) \( \frac{\sin (-\theta)+\cos 120^{\circ}+\tan \left(-180^{\circ}-\theta\right)}{\sin ^{2} 225^{\circ}-\tan (-\theta)-\cos \left(90^{\circ}+\theta\right)} \) B.4 \( 4^{x} \frac{\sin 247^{\circ} \cdot \tan 23^{\circ} \cdot \cos 113^{\circ}}{\sin \left(-157^{\circ}\right)} \) (8.5) \( \frac{3 \cos 150^{\circ} \cdot \sin 270^{\circ}}{\tan \left(-45^{\circ}\right) \cdot \cos 600^{\circ}} \) 8.6) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}+x\right)}{\sin (-x)}-\sin y \cdot \cos \left(90^{\circ}-y\right) \) \( 8.7 \frac{\tan 30^{\circ} \cdot \sin 60^{\circ} \cdot \cos 25^{\circ}}{\cos 135^{\circ} \cdot \sin \left(-45^{\circ}\right) \cdot \sin 65^{\circ}} \) 6.8) \( \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(90^{\circ}-x\right)}{\cos \left(90^{\circ}+x\right)}-\frac{\cos \left(180^{\circ}-x\right)}{\sin \left(90^{\circ}+x\right)} \) \( 8.9 \frac{\sin 189^{\circ}}{\tan 549^{\circ}}-\frac{\cos ^{2}\left(-9^{\circ}\right)}{\sin 99^{\circ}} \) Solving trigonometric equations (no calculators) (1.) If \( \sin \mathrm{A}=\frac{-3}{5} \) and \( 0^{\circ}<\mathrm{A}<270^{\circ} \) determine the value of: \( 1.1 \cos A \) \( 1.2 \tan A \). (2.) If \( -5 \tan \theta-3=0 \) and \( \sin \theta<0 \), determine: \( 2.1 \sin ^{2} \theta^{\circ} \) \( 2.25 \cos \theta \) \( 2.3 \quad 1-\cos ^{2} \theta \) 3. If \( 13 \cos \theta+12=0 \) and \( 180^{\circ}<\theta<360^{\circ} \), evaluate: \( 3.2 \tan \theta \) \( 3.1 \sin \theta \cos \theta \) \( 3.3 \sin ^{2} \theta+\cos ^{2} \theta \). (4.) If \( 3 \tan \theta-2=0 \) and \( \theta \in\left[90^{\circ} ; 360^{\circ}\right] \), determine, the value of \( \sqrt{13}(\sin \theta-\cos \theta \) (5.) If \( \cos 52^{\circ}=k \) as illustrated in the diagram, determine each of the following i
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad