Using numerical analysis and the Quotient Rule of Logarithms, how can \( \log _{11}\left(\frac{14}{t}\right) \) be rewritten? (1 point) \( \log _{11} 14+\log _{11} t \) \( \log _{11} t-\log _{11} 14 \) \( \log _{11}(14-t) \) \( \log _{11} 14-\log _{11} t \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To rewrite \( \log _{11}\left(\frac{14}{t}\right) \) using the Quotient Rule of Logarithms, you can employ the rule which states that \( \log_b\left(\frac{a}{c}\right) = \log_b a - \log_b c \). Applying this here gives: \[ \log_{11}\left(\frac{14}{t}\right) = \log_{11} 14 - \log_{11} t \] So the correct answer is \( \log_{11} 14 - \log_{11} t \). Now you know how to break down logarithmic expressions with division into simpler components; it helps in solving complex problems in algebra and calculus. Don't forget that understanding this rule is crucial when you encounter exponential growth or decay problems in real-life scenarios like population studies or finance!
