Pregunta
upstudy study bank question image url

QUESTION I Parabola - The graph of the form \( f(x)=a(x+p)^{2}+q \) 1.1 Draw the graphs of the equations below accorting to the Graph Papers indicated: First Graph Paper Original graph (M): \( y=x^{2} \) Graph 1: \( y=2 r^{2} \) Graph 2: \( y=\frac{1}{2} x^{2} \) Graph 3: \( y=-2 r^{2} \) Second Graph Paper Original graph (M):y= \( x^{2} \) Graph 1: \( y=x^{2}-4 \) Graph 2: \( y=x^{2}+2 \) Graph 3: \( y=2 r^{2}-4 \) Graph 4: \( y=\frac{1}{2} x^{2}+2 \)

Ask by Stephens Mejia. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To graph the given equations: 1. **First Graph Paper:** - **Original Graph (M):** \( y = x^2 \) (standard upward-opening parabola) - **Graph 1:** \( y = 2x^2 \) (steeper upward-opening parabola) - **Graph 2:** \( y = \frac{1}{2}x^2 \) (less steep upward-opening parabola) - **Graph 3:** \( y = -2x^2 \) (downward-opening parabola) 2. **Second Graph Paper:** - **Original Graph (M):** \( y = x^2 \) (standard upward-opening parabola) - **Graph 1:** \( y = x^2 - 4 \) (downward-shifted parabola) - **Graph 2:** \( y = x^2 + 2 \) (upward-shifted parabola) - **Graph 3:** \( y = 2x^2 - 4 \) (stretched and downward-shifted parabola) - **Graph 4:** \( y = \frac{1}{2}x^2 + 2 \) (compressed and upward-shifted parabola) Each graph is a transformation of the original \( y = x^2 \) parabola, involving vertical stretches, compressions, and shifts.

Solución

To draw the graphs of the given equations, we will analyze each equation step by step. The original graph is \( y = x^2 \), which is a standard parabola opening upwards with its vertex at the origin (0,0). ### First Graph Paper 1. **Original Graph (M):** - Equation: \( y = x^2 \) - This is a standard parabola. 2. **Graph 1:** - Equation: \( y = 2x^2 \) - This graph is a vertical stretch of the original graph by a factor of 2. The vertex remains at (0,0), but the parabola opens upwards more steeply. 3. **Graph 2:** - Equation: \( y = \frac{1}{2}x^2 \) - This graph is a vertical compression of the original graph by a factor of 0.5. The vertex remains at (0,0), but the parabola opens upwards less steeply. 4. **Graph 3:** - Equation: \( y = -2x^2 \) - This graph is a vertical stretch of the original graph by a factor of 2, but it opens downwards. The vertex remains at (0,0). ### Second Graph Paper 1. **Original Graph (M):** - Equation: \( y = x^2 \) - This is the same standard parabola as before. 2. **Graph 1:** - Equation: \( y = x^2 - 4 \) - This graph is a downward shift of the original graph by 4 units. The vertex moves from (0,0) to (0,-4). 3. **Graph 2:** - Equation: \( y = x^2 + 2 \) - This graph is an upward shift of the original graph by 2 units. The vertex moves from (0,0) to (0,2). 4. **Graph 3:** - Equation: \( y = 2x^2 - 4 \) - This graph is a vertical stretch of the original graph by a factor of 2 and a downward shift by 4 units. The vertex moves from (0,0) to (0,-4). 5. **Graph 4:** - Equation: \( y = \frac{1}{2}x^2 + 2 \) - This graph is a vertical compression of the original graph by a factor of 0.5 and an upward shift by 2 units. The vertex moves from (0,0) to (0,2). ### Summary of Transformations - **Vertical Stretch/Compression:** Changes the steepness of the parabola. - **Vertical Shift:** Moves the graph up or down without changing its shape. ### Graphing To graph these equations, you would plot points for each equation and connect them smoothly to form the parabolas. The vertex and direction of opening (upward or downward) are key features to note. If you need visual representations of these graphs, please let me know, and I can assist with that as well!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

The parabolic equations you’ve provided are fantastic examples of how altering the coefficients and constants in the quadratic function changes the shape and position of the graph. Each variation reveals a unique behavior, such as stretching, compressing, and shifting. For instance, with \( y=2x^{2} \), the parabola opens more steeply, whereas \( y=\frac{1}{2}x^{2} \) opens wider. Moving onto translations, \( y=x^{2}-4 \) indicates a downward shift of the entire graph by 4 units, while \( y=x^{2}+2 \) moves it up by 2 units. This means that the vertex of the parabola shifts, but the overall U-shape remains. Meanwhile, the effects of changes in the coefficient outside of the squared term can shift and stretch or compress the graph, creating endless possibilities!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad