2.1.2 Given: \( 2^{x}+2.2^{x}+3.2^{x}+\ldots \) The sum of the first 20 terms of the series is 1680 . Calculate the value of \( x \).
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Extra Insights
To solve for \( x \), we first recognize the series given: \[ 2^{x} + 2 \cdot 2^{x} + 3 \cdot 2^{x} + \ldots + 20 \cdot 2^{x} \] We can factor out \( 2^{x} \): \[ 2^{x} (1 + 2 + 3 + \ldots + 20) \] The sum of the first 20 natural numbers can be calculated using the formula: \[ \text{Sum} = \frac{n(n+1)}{2} \] where \( n = 20 \): \[ 1 + 2 + 3 + \ldots + 20 = \frac{20 \cdot 21}{2} = 210 \] Substituting this back into our expression, we get: \[ 2^{x} \cdot 210 \] According to the problem, the sum of the first 20 terms equals 1680: \[ 2^{x} \cdot 210 = 1680 \] Now, to isolate \( 2^{x} \), divide both sides by 210: \[ 2^{x} = \frac{1680}{210} = 8 \] We know that \( 8 \) can be expressed as \( 2^{3} \): \[ 2^{x} = 2^{3} \] Thus, we conclude: \[ x = 3 \] Therefore, the value of \( x \) is: \[ \boxed{3} \]
