Pregunta
upstudy study bank question image url

A simple pendulum, 1.00 m in length, is released from rest when the support string is at an angle of \( 35.0^{\circ} \) from the vertical. What is the speed of the suspended mass at the bottom of the swing? ( \( g=9.80 \mathrm{~m} / \mathrm{s}^{2} \) and ignore air resistance) 1) \( 0.67 \mathrm{~m} / \mathrm{s} \) 2) \( 0.94 \mathrm{~m} / \mathrm{s} \) 3) \( 1.33 \mathrm{~m} / \mathrm{s} \) 4) \( 1.88 \mathrm{~m} / \mathrm{s} \) 5) \( 2.45 \mathrm{~m} / \mathrm{s} \)

Ask by Blake Kelly. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The speed of the suspended mass at the bottom of the swing is approximately 1.88 m/s.

Solución

We can solve this problem by using energy conservation. Initially, the potential energy of the mass is transformed into kinetic energy at the lowest point of the swing. The change in height, h, of the mass as it swings from an angle θ is given by:   h = L – L cosθ = L(1 – cosθ) For a pendulum of length L = 1.00 m and an angle θ = 35.0°:   h = 1.00(1 – cos35°) Using cos35° ≈ 0.8192:   h ≈ 1.00(1 – 0.8192) = 0.1808 m Now, equating the loss in gravitational potential energy to the gain in kinetic energy gives:   mgh = (½)mv² The mass m cancels, and we solve for v:   v = √(2gh) = √[2(9.80 m/s²)(0.1808 m)] Calculating:   v ≈ √(3.537) ≈ 1.88 m/s Thus, the speed of the suspended mass at the bottom of the swing is approximately 1.88 m/s, which corresponds to option 4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the speed of the suspended mass at the bottom of the swing of a simple pendulum, we can use the principles of energy conservation. At the highest point, the pendulum has potential energy, and at the lowest point, all this energy converts into kinetic energy. First, we need to find the height (h) from which the pendulum is released. The height can be found using the length of the pendulum (L = 1.00 m) and the angle (θ = 35.0°): \[ h = L - L \cos(θ) = 1.00 - 1.00 \cos(35^\circ) \approx 1.00 - 1.00 \times 0.8192 \approx 0.181 \text{ m} \] Now using the potential energy (PE) at the height to find the speed (v) at the bottom, where all this potential energy converts to kinetic energy (KE): \[ PE = mgh \quad \text{and} \quad KE = \frac{1}{2} mv^2 \] Setting PE equal to KE: \[ mgh = \frac{1}{2} mv^2 \] The mass (m) cancels out, giving: \[ gh = \frac{1}{2} v^2 \] Solving for v: \[ v^2 = 2gh \qquad \to \qquad v = \sqrt{2gh} \] Substituting g = 9.80 m/s² and h = 0.181 m: \[ v = \sqrt{2 \times 9.80 \times 0.181} \approx \sqrt{3.55} \approx 1.88 \text{ m/s} \] Thus, the speed of the suspended mass at the bottom of the swing is approximately \( 1.88 \mathrm{~m} / \mathrm{s} \) (Option 4). --- Did you know that the pendulum was crucial in creating accurate clocks in the 17th century? Inventor Christiaan Huygens famously used the pendulum mechanism to construct a clock that was incredibly precise for the time, revolutionizing timekeeping! It helped mariners determine longitude at sea, making voyages far safer and more reliable. In real-world applications, simple pendulum concepts also apply in modern-day technologies. For example, seismographs use pendulum motions to measure and record vibrations of the Earth during earthquakes. Understanding how pendulums work helps improve our engineering practices, ensuring buildings can withstand tremors effectively!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad