Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) Given the following function, (a) find the vertex; (b) determine whether there is a maximum or a minimum value, and find the value; (c) find the range; and (d) find the intervals on which the function is increasing and the intervals on which the function is decreasing. \( f(x)=-\frac{1}{2} x^{2}+5 x-1 \) (a) The vertex is (Type an ordered pair, using integers or fractions.)

Ask by Tucker Gonzalez. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The vertex is (5, 23/2).

Solución

We start with the function   f(x) = -½ x² + 5x - 1 Step (a): To find the vertex, recall that for any quadratic function in the form   f(x) = ax² + bx + c, the x-coordinate of the vertex is given by x = -b/(2a). Here, a = -½ and b = 5. Thus:   x = -5 / (2(-½)) = -5 / (-1) = 5 Now substitute x = 5 into the function to find the y-coordinate:   f(5) = -½(5)² + 5(5) - 1      = -½(25) + 25 - 1      = -12.5 + 25 - 1      = 11.5      = 23/2 (as a fraction) Therefore, the vertex is (5, 23/2).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the vertex of the quadratic function \( f(x) = -\frac{1}{2}x^2 + 5x - 1 \), we can use the vertex formula. The x-coordinate of the vertex can be found using the formula \( x = -\frac{b}{2a} \). Here, \( a = -\frac{1}{2} \) and \( b = 5 \). Calculating the x-coordinate: \[ x = -\frac{5}{2 \times -\frac{1}{2}} = -\frac{5}{-1} = 5. \] Now substitute \( x = 5 \) back into the function to find the y-coordinate: \[ f(5) = -\frac{1}{2}(5^2) + 5(5) - 1 = -\frac{1}{2}(25) + 25 - 1 = -12.5 + 25 - 1 = 11.5. \] Thus, the vertex is \( (5, 11.5) \). Now, let’s dive into some interesting nuggets! Did you know that the vertex of a quadratic function is not just a point of interest in math? It represents the maximum or minimum value, depending on the direction of the parabola, and serves as a pivot for any graph sketching! Additionally, knowing how to find the vertex assists in problem-solving for optimization scenarios in fields like engineering and economics, where maximizing profits or minimizing costs are crucial tasks! The vertex provides quick insight into where these optimal values lie!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad