Determine the value of the expression without the use of a culculator: \[ \frac{\tan 300^{\circ}+\cos \left(90^{\circ}+x\right)}{\sin \left(180^{\circ}-x\right)+2 \cos \left(-30^{\circ}\right)} \] Prove the following identity: \( \frac{1-\sin 2 x}{\cos 2 x}=\frac{\cos x-\sin x}{\cos x+\sin x} \) Determine the general solution of \( \cos x-\sin x=\sqrt{2} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To tackle the expression first, we start with evaluating each trigonometric function involved. 1. **Evaluating the Expression** \(\tan 300^{\circ} = \tan(360^{\circ} - 60^{\circ}) = -\tan 60^{\circ} = -\sqrt{3}\). Next, \(\cos(90^{\circ} + x) = -\sin x\). For \(\sin(180^{\circ} - x) = \sin x\) and \(2 \cos(-30^{\circ}) = 2 \cdot \frac{\sqrt{3}}{2} = \sqrt{3}\). Putting it all together, the expression becomes: \(\frac{-\sqrt{3} - \sin x}{\sin x + \sqrt{3}}\). 2. **Proving the Identity** Starting with the left-hand side: \(\frac{1 - \sin 2x}{\cos 2x} = \frac{1 - 2 \sin x \cos x}{\cos^2 x - \sin^2 x}\). Rewrite \(1\) in terms of sines and cosines: \(\frac{\cos^2 x + \sin^2 x - 2\sin x \cos x}{\cos^2 x - \sin^2 x} = \frac{(\cos x - \sin x)^2}{\cos^2 x - \sin^2 x}\). The right-hand side simplifies to: \(\frac{(\cos x - \sin x)(\cos x - \sin x)}{(\cos x - \sin x)(\cos x + \sin x)}\), thus confirming the equality. 3. **Finding the General Solution** To solve \(\cos x - \sin x = \sqrt{2}\), we rewrite it as: \(\sqrt{2} = \sqrt{\cos^2 x + \sin^2 x} \cdot \left(\frac{\cos x}{\sqrt{2}} - \frac{\sin x}{\sqrt{2}}\right)\). The maximum deviation for \(\cos x - \sin x\) is \(\sqrt{2}\) when the angle \((\frac{\pi}{4} + n\pi)\) is adjusted to attain its max. Thus, valid solutions occur at \(\cos x - \sin x \leq 1\), leading to no solutions since \(\sqrt{2}\) exceeds the maximum reached by \(1\) on the interval. In conclustion, the expressions align with trigonometric identities, confirming no valid solutions exist for the given cosine-sine equation.
