Pregunta
upstudy study bank question image url

3. Talia and Mutinta are given an order to make 5 dresses for a matric dance. It takes thours for Talia to make the dresses working on her own, and Mutinta would take 8 hours longer if she did the job on her own. Working together, they could complete the dresses in 28 hours. Calculate how long it would take each of them

Ask by Ramos Gibbs. in South Africa
Feb 18,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Talia takes approximately 52.3 hours and Mutinta takes approximately 60.3 hours to make the dresses individually.

Solución

Let t be the number of hours Talia takes by herself to make the 5 dresses. Then Mutinta, working alone, would take (t + 8) hours. When someone works alone, their work‐rate is (total work)/(time). Here the work is “5 dresses.” • Talia’s rate: 5/t dresses per hour. • Mutinta’s rate: 5/(t + 8) dresses per hour. Working together, they complete the 5 dresses in 28 hours, so their combined work‐rate is 5/28 dresses per hour. Thus, we can set up the equation for their combined rates:   (5/t) + (5/(t + 8)) = 5/28 Step 1. Divide both sides by 5:   (1/t) + (1/(t + 8)) = 1/28 Step 2. Combine the fractions on the left:   (t + 8 + t) / [t(t + 8)] = 1/28   (2t + 8) / [t(t + 8)] = 1/28 Step 3. Cross‐multiply:   28(2t + 8) = t(t + 8) Step 4. Expand both sides:   56t + 224 = t² + 8t Step 5. Rearrange the equation:   t² + 8t − 56t − 224 = 0   t² − 48t − 224 = 0 Step 6. Solve this quadratic equation by using the quadratic formula:   t = [48 ± √(48² − 4(1)(−224))]/2 Calculate the discriminant:   48² = 2304 and 4×224 = 896, so   √(2304 + 896) = √3200 Notice that 3200 = 16×200, so:   √3200 = 4√200 = 4×10√2 = 40√2 Thus,   t = (48 ± 40√2)/2 = 24 ± 20√2 Since time cannot be negative, we take the positive solution:   t = 24 + 20√2 hours Step 7. Now, Mutinta’s time is:   t + 8 = (24 + 20√2) + 8 = 32 + 20√2 hours Thus, the answers are:  • Talia takes exactly 24 + 20√2 hours (approximately 52.3 hours),  • Mutinta takes exactly 32 + 20√2 hours (approximately 60.3 hours). You can check the work rates:  Talia’s rate = 5/(24 + 20√2),  Mutinta’s rate = 5/(32 + 20√2), and together these sum to 5/28 dresses per hour, as required. So, the final answer is:  Talia: 24 + 20√2 hours,  Mutinta: 32 + 20√2 hours.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Let’s delve into their dress-making escapades! If we say Talia takes "t" hours to make the 5 dresses, then Mutinta would take "t + 8" hours. When they join forces, their combined work rate allows them to finish the task in 28 hours. The magic happens when we recognize that in one hour, Talia completes 1/5t of a dress and Mutinta achieves 1/5(t + 8) of a dress. Together, they can make a total of: \[ \frac{1}{5t} + \frac{1}{5(t + 8)} = \frac{1}{28} \] Solving this equation leads to determining their individual times. Now, for a quick look at common pitfalls when tackling problems like this: Many people confuse total time with individual rates. Remember, working together adds the rates but doesn’t change the total output needed! And don't forget to simplify fractions where you can. Happy dress-making calculations!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad