Pregunta
upstudy study bank question image url

10. Giovanni invests 4500 koruna in a savings account for 4 years. He gets \( 2.4 \% \) per year compound interest. Work out how much money Giovanni will have in the savings account at the end of 4 years. Give your answer correct to the nearest koruna.

Ask by Bartlett Stanley. in Kuwait
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Giovanni will have approximately 4948 koruna in the savings account at the end of 4 years.

Solución

To calculate the amount of money Giovanni will have in the savings account at the end of 4 years, we can use the formula for compound interest: \[ A = P \times (1 + r)^n \] Where: - \( A \) is the amount of money Giovanni will have at the end of 4 years. - \( P \) is the principal amount Giovanni invested (4500 koruna). - \( r \) is the annual interest rate (2.4%). - \( n \) is the number of years (4 years). Substitute the given values into the formula: \[ A = 4500 \times (1 + 0.024)^4 \] Now, we can calculate the amount of money Giovanni will have at the end of 4 years. Calculate the value by following steps: - step0: Calculate: \(4500\left(1+0.024\right)^{4}\) - step1: Add the numbers: \(4500\times 1.024^{4}\) - step2: Convert the expressions: \(4500\left(\frac{128}{125}\right)^{4}\) - step3: Simplify: \(4500\times \frac{128^{4}}{125^{4}}\) - step4: Rewrite the expression: \(125\times 36\times \frac{128^{4}}{125^{4}}\) - step5: Reduce the numbers: \(36\times \frac{128^{4}}{125^{3}}\) - step6: Multiply: \(\frac{36\times 128^{4}}{125^{3}}\) The amount of money Giovanni will have in the savings account at the end of 4 years is approximately 4947.80 koruna, correct to the nearest koruna.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the amount Giovanni will have in his savings account after 4 years with compound interest, we can use the formula: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (decimal), - \( n \) is the number of years the money is invested. Plugging in Giovanni's values: - \( P = 4500 \) koruna - \( r = 2.4/100 = 0.024 \) - \( n = 4 \) Now, we can calculate: \[ A = 4500(1 + 0.024)^4 \] Calculating: \[ A = 4500(1.024)^4 \] \[ A = 4500(1.0994) \] \[ A \approx 4947.30 \] Rounding to the nearest koruna, Giovanni will have approximately **4947 koruna** in his savings account at the end of 4 years.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad