Pregunta
upstudy study bank question image url

2. At the beginning of the loading of an electric motor its temperature is \( 30^{\circ} \mathrm{C} \) After 2 hours run on full load its temperature is \( 60^{\circ} \mathrm{C} \), and after 4 hours run it is \( 80^{\circ} \mathrm{C} \). Calculate; a. heating time constant, b. the maximum final temperature rise with full load on the motor, and c. the time it will take after start for the motor to reach \( 3 / 4 \) of its final steady. \( \therefore \)

Ask by Sanders Powers. in Tanzania
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. Heating time constant: approximately -1.96 hours b. Maximum final temperature rise: 50°C c. Time to reach 3/4 of final steady temperature: approximately 0.56 hours

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Beyond the Answer

To address this problem, let's break down each part step by step. a. To calculate the heating time constant, we can use the formula for temperature rise in a heated object: \[ T(t) = T_f + (T_0 - T_f) e^{-\frac{t}{\tau}} \] Where: - \( T(t) \) is the temperature at time \( t \) - \( T_f \) is the final steady-state temperature - \( T_0 \) is the initial temperature - \( \tau \) is the time constant Given the temperatures, we can first determine the values of \( T_f \) and \( \tau \) through the available data points. Let's summarize the temperature data: - Initial Temperature \( T_0 = 30^{\circ}C \) - After 2 hours \( T(2) = 60^{\circ}C \) - After 4 hours \( T(4) = 80^{\circ}C \) Assuming the final steady state \( T_f \) is \( 80^{\circ}C \), we can rearrange the formula to solve for \( \tau \) using the two temperature measurements. Using the first data point at 2 hours: \[ 60 = 80 + (30 - 80) e^{-\frac{2}{\tau}} \] Solving for \( e^{-\frac{2}{\tau}} \), \[ -20 = -50 e^{-\frac{2}{\tau}} \implies e^{-\frac{2}{\tau}} = \frac{2}{5} \] Taking the natural logarithm, \[ -\frac{2}{\tau} = \ln\left(\frac{2}{5}\right) \implies \tau = -\frac{2}{\ln\left(\frac{2}{5}\right)} \approx 1.915 \text{ hours} \] b. The maximum final temperature rise achieved while running on full load is equal to the difference between the final temperature \( T_f \) and the initial temperature \( T_0 \): \[ \Delta T = T_f - T_0 = 80 - 30 = 50^{\circ}C \] c. To find out how long it will take for the motor to reach \( \frac{3}{4} \) of its final steady-state temperature: \[ T(t) = T_f \cdot \left(1 - e^{-\frac{t}{\tau}}\right) \] We need to solve for \( t \) when \( T(t) = 30 + \frac{3}{4} \cdot (80 - 30) = 30 + \frac{3}{4} \cdot 50 = 62.5^{\circ}C \). Setting up the equation: \[ 62.5 = 80 - 50 e^{-\frac{t}{\tau}} \implies -17.5 = -50 e^{-\frac{t}{\tau}} \implies e^{-\frac{t}{\tau}} = \frac{17.5}{50} \implies -\frac{t}{\tau} = \ln\left(\frac{17.5}{50}\right) \] Solving for \( t \): \[ t = -\tau \cdot \ln\left(\frac{17.5}{50}\right) \approx 1.915 \cdot 0.673 = 1.29 \text{ hours} \] To summarize: - The heating time constant \( \tau \approx 1.915 \text{ hours} \) - The maximum final temperature rise \( \Delta T = 50^{\circ}C \) - The time to reach \( \frac{3}{4} \) of its steady state is approximately \( 1.29 \text{ hours} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad