Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
\( h(z) = -\frac{2}{25} \)
Solución
To find \( h(z) \) given the expression \( h(z) = -2 \cdot 5^{-1-1} \), we first simplify the exponent.
The exponent is:
\[
-1 - 1 = -2
\]
Now we can rewrite the expression for \( h(z) \):
\[
h(z) = -2 \cdot 5^{-2}
\]
Next, we calculate \( 5^{-2} \):
\[
5^{-2} = \frac{1}{5^2} = \frac{1}{25}
\]
Now substituting this back into the expression for \( h(z) \):
\[
h(z) = -2 \cdot \frac{1}{25} = -\frac{2}{25}
\]
Thus, the value of \( h(z) \) is:
\[
\boxed{-\frac{2}{25}}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To solve for \( h(z) \), we first simplify the expression given: \[ h(z) = -2 \cdot 5^{-1-1} = -2 \cdot 5^{-2}. \] Now, recall that \( 5^{-2} \) is equivalent to \( \frac{1}{5^2} \), which is \( \frac{1}{25} \). Therefore, substituting this into the equation gives: \[ h(z) = -2 \cdot \frac{1}{25} = -\frac{2}{25}. \] So the final value of \( h(z) \) is: \[ h(z) = -\frac{2}{25}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium